• 제목/요약/키워드: doubly symmetric section

검색결과 11건 처리시간 0.02초

이축대칭단면 HSB800 강재 플레이트거더의 비탄성 횡비틂좌굴강도의 해석적 평가 (Numerical Analysis of Inelastic Lateral Torsional Buckling Strength of HSB800 Steel Plate Girders with Doubly Symmetric Section)

  • 박용명;이건준;최병호;황민오
    • 한국강구조학회 논문집
    • /
    • 제25권2호
    • /
    • pp.141-151
    • /
    • 2013
  • 본 연구에서는 균일휨모멘트를 받는 HSB800 강재 플레이트거더의 횡비틀림좌굴(LTB) 강도를 비선형해석으로 평가하였다. 세장, 비조밀 및 조밀 복부판을 갖는 이축대칭단면들을 대상으로 하였으며, 초기처짐과 잔류응력의 영향을 고려하여 비탄성좌굴 영역의 LTB 강도를 평가하였다. 본 연구에서는 단일패널모델과 3-패널모델을 각각 고려하였으며, 이들 모델의 타당성을 평가하기 위해 SM490 강재 거더에 대해 해석을 수행하고 AASHTO, AISC, Eurocode 및 국내 도로교한계상태기준과 비교하였다. 이후 동일한 방법으로 HSB800 강재거더에 대해 LTB 강도 평가 해석을 수행하였으며, 비탄성 영역의 LTB 강도에 대한 현재 기준이 이축대칭 HSB800 강재 거더에서도 적용될 수 있는 것으로 평가되었다.

Inelastic distortional buckling of hot-rolled I-section beam-columns

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • 제4권1호
    • /
    • pp.23-36
    • /
    • 2004
  • The inelastic lateral-distortional buckling of doubly-symmetric hot-rolled I-section beam-columns subjected to a concentric axial force and uniform bending with elastic restraint which produce single curvature is investigated in this paper. The numerical model adopted in this paper is an energy-based method which leads to the incremental and iterative solution of a fourth-order eigenproblem, with very rapid solutions being obtained. The elastic restraint considered in this paper is full restraint against translation, but torsional restraint is permitted at the tension flange. Hitherto, a numerical method to analyse the elastic and inelastic lateral-distortional buckling of restrained or unrestrained beam-columns is unavailable. The prediction of the inelastic lateral-distortional buckling load obtained in this study is compared with the inelastic lateral-distortional buckling of restrained beams and the inelastic lateral-torsional buckling solution, by suppressing the out-of-plane web distortion, is published elsewhere and they agree reasonable well. The method is then extended to the lateral-distortional buckling of continuously restrained doubly symmetric I-sections to illustrate the effect of web distortion.

Analytical Solutions for the Inelastic Lateral-Torsional Buckling of I-Beams Under Pure Bending via Plate-Beam Theory

  • Zhang, Wenfu;Gardner, Leroy;Wadee, M. Ahmer;Zhang, Minghao
    • 국제강구조저널
    • /
    • 제18권4호
    • /
    • pp.1440-1463
    • /
    • 2018
  • The Wagner coefficient is a key parameter used to describe the inelastic lateral-torsional buckling (LTB) behaviour of the I-beam, since even for a doubly-symmetric I-section with residual stress, it becomes a monosymmetric I-section due to the characteristics of the non-symmetrical distribution of plastic regions. However, so far no theoretical derivation on the energy equation and Wagner's coefficient have been presented due to the limitation of Vlasov's buckling theory. In order to simplify the nonlinear analysis and calculation, this paper presents a simplified mechanical model and an analytical solution for doubly-symmetric I-beams under pure bending, in which residual stresses and yielding are taken into account. According to the plate-beam theory proposed by the lead author, the energy equation for the inelastic LTB of an I-beam is derived in detail, using only the Euler-Bernoulli beam model and the Kirchhoff-plate model. In this derivation, the concept of the instantaneous shear centre is used and its position can be determined naturally by the condition that the coefficient of the cross-term in the strain energy should be zero; formulae for both the critical moment and the corresponding critical beam length are proposed based upon the analytical buckling equation. An analytical formula of the Wagner coefficient is obtained and the validity of Wagner hypothesis is reconfirmed. Finally, the accuracy of the analytical solution is verified by a FEM solution based upon a bi-modulus model of I-beams. It is found that the critical moments given by the analytical solution almost is identical to those given by Trahair's formulae, and hence the analytical solution can be used as a benchmark to verify the results obtained by other numerical algorithms for inelastic LTB behaviour.

이축 대칭단면을 갖는 박벽 원형아치의 면외좌굴해석 (Out-of-plane Buckling Analysis of Doubly Symmetric Thin-walled Circular Arch)

  • 김문영;민병철;김성보
    • 한국강구조학회 논문집
    • /
    • 제10권3호통권36호
    • /
    • pp.509-523
    • /
    • 1998
  • 본 연구에서는 이축 대칭단면을 갖는 박벽 원형아치의 안정성해석을 수행할 수 있는 유한요소 이론 및 엄밀해를 제시하기 위하여, 가상일의 원리를 이용한 3차원 연속체의 운동방정식을 제시한다. 박벽단면의 구속된 비틂(restrained warping)효과를 고려하는 박벽 곡선보의 변위장을 도입하고 이를 연속체의 운동방정식에 대입하여 단면에 대해 적분함으로써 박벽 곡선보의 운동방정식을 유도한다. 단순지지되고 이축 대칭단면을 갖는 박벽 곡선보의 면외좌굴에 대한 엄밀해를 제시하고 박벽 곡선보를 유한요소로 분할하여 요소의 변위장을 요소 변위벡터에 관한 3차의 Hermitian 다항식으로 나타내어 운동방정식에 대입함으로써 탄성 강도행렬과 기하학적 강도행렬을 유도한다. 또한 본 연구에서 얻어진 엄밀해와 박벽 곡선보요소를 이용한 유한요소해석결과를 다른 연구자들의 결과 및 직선 박벽보 요소를 이용한 해석결과와 비교 검토를 함으로써 분 연구의 타당성을 입증한다.

  • PDF

Timoshenko형 전단변형을 고려한 대칭적층 개단면 복합재 보의 휨해석 (Bending Analysis of Symmetrically Laminated Composite Open Section Beam Using the First-Order Shear Deformation Beam Theory)

  • 권효찬;박영석;신동구
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2000년도 봄 학술발표회논문집
    • /
    • pp.43-50
    • /
    • 2000
  • In the first-order shear deformation laminated beam theory (FSDT), the Kirchhoff hypothesis is relaxed such that the transverse normals do not remain perpendicular to the midsurface after deformation. Bending behavior of laminated composite thin-walled beams with singly- and doubly-symmetric open sections under uniformly distributed and concentrated loads is analyzed by the Timoshenko-type thin-walled beam theory. A closed-form expression for the shear correction factor of I-shaped composite laminated section is obtained. Numerical examples are presented to compare present analytical solutions by FSDT with the finite element solutions obtained by using three dimensional model. The effects of lamination of scheme and length-to-height ratio on the shear deformation of laminated composite beams with various boundary conditions are studied.

  • PDF

HSB800 및 HSB600 강재를 적용한 하이브리드거더의 휨강도 평가 (Evaluation of Flexural Strength of Hybrid Girder composed of HSB800 and HSB600 Steel)

  • 박용명;강지훈;이건준;김희순
    • 한국강구조학회 논문집
    • /
    • 제26권6호
    • /
    • pp.581-594
    • /
    • 2014
  • HSB800과 HSB600 강재를 플랜지와 웨브에 적용하고 균일휨모멘트를 받는 하이브리드거더의 휨강도 평가를 위한 연구를 수행하였다. 비조밀 및 조밀플랜지와 세장, 비조밀 및 조밀 웨브를 갖는 이축 및 일축대칭 단면들을 대상으로 하였으며, 3차원 쉘요소 모델에 초기처짐과 잔류응력의 영향을 고려하여 '단면 휨강도' 및 '횡비틀림좌굴 강도'를 비선형해석으로부터 평가하였다. 수치해석 결과는 AASHTO LRFD 및 Eurocode 3 기준과 비교하였으며, 비조밀 및 조밀 웨브를 갖는 단면에 대해서는 AASHTO LRFD 부록 A6 기준의 적용성을 분석하였다.

보와 아치의 좌굴강도에 관한 연구의 필요성 (The Need for Research about Buckling Strength of Arch and Beam)

  • 임남형;이진옥;류효진;이우철;구소연
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.223-226
    • /
    • 2007
  • In current specification, modification factor(B) for web-tapered beam is used to account for the stress gradient and the restraining effect for adjacent spans. However, because these effects are considered together in modification factor, this paper revaluate the accuracy of the modification factor used in current specification. Also this paper investigate the flexural torsional buckling strength of laterally fixed thin-walled arch with doubly symmetric section using the analytical and numerical method. From this investigate the concept of effective length to consider the out-of-plane boundary condition for straight column or beam is not applicate for the flexural-torsional buckling of laterally fixed arches.

  • PDF

Cross-sectional analysis of arbitrary sections allowing for residual stresses

  • Li, Tian-Ji;Liu, Si-Wei;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • 제18권4호
    • /
    • pp.985-1000
    • /
    • 2015
  • The method of cross-section analysis for different sections in a structural frame has been widely investigated since the 1960s for determination of sectional capacities of beam-columns. Many hand-calculated equations and design graphs were proposed for the specific shape and type of sections in pre-computer age decades ago. In design of many practical sections, these equations may be uneconomical and inapplicable for sections with irregular shapes, leading to the high construction cost or inadequate safety. This paper not only proposes a versatile numerical procedure for sectional analysis of beam-columns, but also suggests a method to account for residual stress and geometric imperfections separately and the approach is applied to design of high strength steels requiring axial force-moment interaction for advanced analysis or direct analysis. A cross-section analysis technique that provides interaction curves of arbitrary welded sections with consideration of the effects of residual stress by meshing the entire section into small triangular fibers is formulated. In this study, two doubly symmetric sections (box-section and H-section) fabricated by high-strength steel is utilized to validate the accuracy and efficiency of the proposed method against a hand-calculation procedure. The effects of residual stress are mostly not considered explicitly in previous works and they are considered in an explicit manner in this paper which further discusses the basis of the yield surface theory for design of structures made of high strength steels.

Lateral-torsional buckling of prismatic and tapered thin-walled open beams: assessing the influence of pre-buckling deflections

  • Andrade, A.;Camotim, D.
    • Steel and Composite Structures
    • /
    • 제4권4호
    • /
    • pp.281-301
    • /
    • 2004
  • The paper begins by presenting a unified variational approach to the lateral-torsional buckling (LTB) analysis of doubly symmetric prismatic and tapered thin-walled beams with open cross-sections, which accounts for the influence of the pre-buckling deflections. This approach (i) extends the kinematical assumptions usually adopted for prismatic beams, (ii) consistently uses shell membrane theory in general coordinates and (iii) adopts Trefftz's criterion to perform the bifurcation analysis. The proposed formulation is then applied to investigate the influence of the pre-buckling deflections on the LTB behaviour of prismatic and web-tapered I-section simply supported beams and cantilevers. After establishing an interesting analytical result, valid for prismatic members with shear centre loading, several elastic critical moments/loads are presented, discussed and, when possible, also compared with values reported in the literature. These numerical results, which are obtained by means of the Rayleigh-Ritz method, (i) highlight the qualitative differences existing between the LTB behaviours of simply supported beams and cantilevers and (ii) illustrate how the influence of the pre-buckling deflections on LTB is affected by a number of factors, namely ($ii_1$) the minor-to-major inertia ratio, ($ii_2$) the beam length, ($ii_3$) the location of the load point of application and ($ii_4$) the bending moment diagram shape.

Minimum cost design of overhead crane beam with box section strengthened by CFRP laminates

  • Kovacs, Gyorgy;Farkas, Jozsef
    • Structural Engineering and Mechanics
    • /
    • 제61권4호
    • /
    • pp.475-481
    • /
    • 2017
  • An overhead travelling crane structure of two doubly symmetric welded box beams is designed for minimum cost. The rails are placed over the inner webs of box beams. The following design constraints are considered: local buckling of web and flange plates, fatigue of the butt K weld under rail and fatigue of fillet welds joining the transverse diaphragms to the box beams, fatigue of CFRP (carbon fibre reinforced plastic) laminate, deflection constraint. For the formulation of constraints the relatively new standard for cranes EN 13001-3-1 (2010) is used. To fulfill the deflection constraint CFRP strengthening should be used. The application of CFRP materials in strengthening of steel and concrete structures are widely used in civil engineering applications due to their unique advantages. In our study, we wanted to show how the mechanical properties of traditional materials can be improved by the application of composite materials and how advanced materials and new production technologies can be applied. In the optimization the following cost parts are considered: material, assembly and welding of the steel structure, material and fabrication cost of CFRP strengthening. The optimization is performed by systematic search using a MathCAD program.