• 제목/요약/키워드: double-stranded RNA

검색결과 130건 처리시간 0.025초

맥문동 열수 추출물이 Poly I:C를 처리한 폐암세포주의 사멸 및 염증성 사이토카인 발현에 미치는 영향 (Effects of Liriope muscari Water Extracts on the Cell Death and Inflammatory Cytokine Expression of Poly I:C-treated Lung Carcinoma Cells)

  • 강다연;조남준;렌친핸드;이보희;김은미;남명수;김기광
    • 대한본초학회지
    • /
    • 제36권1호
    • /
    • pp.97-102
    • /
    • 2021
  • Objectives : Virus infection through the respiratory tract causes various inflammatory diseases such as pneumonia, cystic fibrosis, and obstructive pulmonary disease, causing enormous social damage. Therefore, it is very important to develop a treatment and prevention of infectious diseases. In this study, we investigated the effect of water extracts of Liriope muscari (WELM), known to improve lung function, on the inflammatory response of lung carcinoma cell line A549 cells induced by the viral double stranded RNA mimetic Polyinosinic:polycytidylic acid (Poly I:C). Methods : The cell viability by WELM treatment was analyzed using MTS assay in A549 cells. After inducing an inflammatory response to WELM-treated A549 cells with Poly I:C, the degree of apoptosis was confirmed through bright field microscopy. Interferon beta (IFN-β) mRNA expression level in A549 cells was analyzed by quantitative reverse transcription PCR (qRT-PCR). Results : WELM treatment has no significant effect on cell viability of A549 cells. We confirmed that pre-treatment of WELM effectively reduces the Poly I:C-induced apoptotic cell death in A549 cells. In addition, it was confirmed that the mRNA expression level of IFN-β, a pro-inflammatory cytokine increased by Poly I:C treatment, was significantly suppressed by WELM treatment in A549 cells. Conclusions : These results provide the evidence that WELM is effective at inhibiting inflammation on respiratory viral infections and suggest that Liriope muscari might be a valuable natural substance in the prevention and treatment of infectious diseases.

An inhibitory alternative splice isoform of Toll-like receptor 3 is induced by type I interferons in human astrocyte cell lines

  • Seo, Jin-Won;Yang, Eun-Jeong;Kim, Se Hoon;Choi, In-Hong
    • BMB Reports
    • /
    • 제48권12호
    • /
    • pp.696-701
    • /
    • 2015
  • Toll-like receptor 3 (TLR3) recognizes viral double-stranded RNA. It stimulates pro-inflammatory cytokine and interferon production. Here we reported the expression of a novel isoform of TLR3 in human astrocyte cell lines whose message is generated by alternative splicing. The isoform represents the N-terminus of the protein. It lacks many of the leucine-rich repeat domains, the transmembrane domain, and the intracellular Toll/interleukin-1 receptor domain of TLR3. Type I interferons (interferon-α and interferon-β) induced the expression of this isoform. Exogenous overexpression of this isoform inhibited interferon regulatory factor 3, signal transducers and activators of transcription 1, and Inhibitor of kappa B α signaling following stimulation. This isoform of TLR3 also inhibited the production of chemokine interferon-γ-inducible protein 10. Our study clearly demonstrated that the expression of this isoform of TLR3 was a negative regulator of signaling pathways and that it was inducible by type I interferons. We also found that this isoform could modulate inflammation in the brain.

A Newly Isolated Bacteriophage, PBES 02, Infecting Cronobacter sakazakii

  • Lee, Hyung Ju;Kim, Wan Il;Kwon, Young Chan;Cha, Kyung Eun;Kim, Minjin;Myung, Heejoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제26권9호
    • /
    • pp.1629-1635
    • /
    • 2016
  • A novel bacteriophage, PBES 02, infecting Cronobacter sakazakii was isolated and characterized. It has a spherical head of 90 nm in diameter and a tail of 130 nm in length, and belongs to Myoviridae as observed under a transmission electron microscope. The major virion protein appears to be 38 kilodaltons (kDa) in size. The latent period of PBES 02 is 30 min and the burst size is 250. Infectivity of the phage remained intact after exposure to temperatures ranging from 4℃ to 55℃ for 1 h. It was also stable after exposure to pHs ranging from 6 to 10 for 1 h. The phage effectively removed contaminating Cronobacter sakazakii from broth infant formula. PBES 02 has a double-stranded DNA genome of 149,732 bases. Its GC ratio is 50.7%. Sequence analysis revealed that PBES 02 has 299 open reading frames (ORFs) and 14 tRNA genes. Thirty-nine ORFs were annotated, including 24 related to replication and regulation functions, 10 related to structural proteins, and 5 related to DNA packaging. The genome of PBES 02 is closely related to that of two other C. sakazakii phages, CR3 and CR8. Comparison of DNA sequences of genes encoding the major capsid protein revealed a wide geographical distribution of related phages over Asia, Europe, and America.

최근 국내 분리 고병원성 infectious bursal disease virus의 segment A 유전자 특성 (Sequence analysis of segment A gene of a very virulent infectious bursal disease virus recently isolated in Korea)

  • 오현석;이진화;권혁무;성환우
    • 대한수의학회지
    • /
    • 제51권1호
    • /
    • pp.37-46
    • /
    • 2011
  • Infectious bursal disease virus (IBDV) is a member of the Avibirnavirus genus of the Birnaviridae family which genome consists of two segments (A and B) of double stranded RNA. Segment A gene of KNU08010 isolate, which was isolated from a 15-day-old chicken flock in 2008, was sequenced and compared with other IBDV isolates including SH/92 strain, the first Korean very virulent (vv) IBDV isolate. The amino acid sequences of segment A gene showed that KNU08010 had 99.2% homology with SH92 strain. KNU08010 isolate had specific amino acids A222, I242, I256, I294 and S299 which are highly conserved among vvIBDV strains. Phylogenetic analysis based on the nucleotide sequences of variable region of the VP2 gene of 18 IBDV strains revealed that KNU08010 was grouped with vvIBDVs and was closely related to Korean vvIBDVs isolated from wild birds.

신장 기능과 틸로미어 (Kidneys with bad ends)

  • 서동철
    • Childhood Kidney Diseases
    • /
    • 제12권1호
    • /
    • pp.11-22
    • /
    • 2008
  • Telomeres consist of tandem guanine-thymine(G-T) repeats in most eukaryotic chromosomes. Human telomeres are predominantly linear, double stranded DNA as they ended in 30-200 nucleotides(bases,b) 3'-overhangs. In DNA replication, removal of the terminal RNA primer from the lagging strand results in a 3'-overhang of uncopied DNA. This is because of bidirectional DNA replication and specificity of unidirectional DNA polymerase. After the replication, parental and daughter DNA strands have unequal lengths due to a combination of the end-replication problem and end-processing events. The gradual chromosome shortening is observed in most somatic cells and eventually leads to cellular senescence. Telomere shortening could be a molecular clock that signals the replicative senescence. The shortening of telomeric ends of human chromosomes, leading to sudden growth arrest, triggers DNA instability as biological switches. In addition, telomere dysfunction may cause chronic allograft nephropathy or kidney cancers. The renal cell carcinoma(RCC) in women may be less aggressive and have less genomic instability than in man. Younger patients with telomere dysfunction are at a higher risk for RCC than older patients. Thus, telomeres maintain the integrity of the genome and are involved in cellular aging and cancer. By studying the telomeric DNA, we may characterize the genetic determinants in diseases and discover the tools in molecular medicine.

  • PDF

Modulation of a Fungal Signaling by Hypovirus

  • Kim, Dae-Hyuk
    • The Plant Pathology Journal
    • /
    • 제19권1호
    • /
    • pp.30-33
    • /
    • 2003
  • The chestnut blight fungus, Cryphonectria parasitica, and its hypovirus aye a useful model system in the study of the mechanisms of hypoviral infection and its consequences, such as a biological control of fungal pathogens. Strains containing the double-stranded (ds) RNA viruses Cryphonectria hypovirus 1 show characteristic symptoms of hypovirulence and display hypovirulence-associated changes, such as reduced pigmentation, sporulation, laccase production, and oxalate accumulation. Interestingly, symptoms caused by hypoviral infection appear to be the result of aberrant expression of a number of specific genes in the hypovirulent strain. Several viral regulated fungal genes are identified as cutinase gene, Lac1, which encodes an extracellular laccase, Crp, which encodes an abundant tissue-specific cell-surface hydrophobin that mediates physical strength, and Mf2/1 and Mf2/2, which encode pheromone genes involved in poor sporulation in the presence of hypo-virus. Since the phenotypic changes in the fungal host are pleiotropic, although coordinated and specific, it has been suggested that the hypovirus disturbs one or several regulatory pathways (Nuss,1996). Accordingly, several studies have shown the implementation of a signal transduction pathway during viral symptom development. Although further studies are required, hypovirulence and its associated symptom development due to the hypoviral regulation of a fungal hetero-trimeric G-protein have been suggested. In addition, recent studies have shown the presence of a novel protein kinase gene cppk1 and its transcriptional upregulation by hypovirus. In this review, the presence of important components in signal transduction pathway, their putative biological function, and viral-specific regulation will be addressed.

Function of mORF1 Protein as a Terminal Recognition Factor for the Linear Mitochondrial Plasmid pMLP1 from Pleurotus ostreatus

  • Kim, Eun-Kyoung;Roe, Jung-Hye
    • Journal of Microbiology
    • /
    • 제37권4호
    • /
    • pp.229-233
    • /
    • 1999
  • The mitochondrial plasmid pMLP1 from a white-rot fungus, Pleurotus ostreatus, is a double-stranded DNA containing 381 bp terminal inverted repeat (TIR) whose 5'-ends are covalently bound by terminal proteins. The plasmid contains two major open reading frames (ORFs), encoding putative DNA and RNA polymerases, and a minor ORF encoding a small, highly basic protein. To identify the DNA binding activity that recognizes the TIR region of pMLP1, gel retardation assays were performed with mitochondrial extracts. A specific protein binding to a region between 123 and 248 nt within TIR was observed. We examined whether the gene product of mORF1 bindes to this region specifically. E. coli cell extract which contains an overproduced mORF1 protein formed a complex specific to the region between 123 and 248 nt. Inclusion of mORF1 protein in the specific complex formed between P. ostreatus mitochondrial extract and TIR was confirmed by a supershift assay using polyclonal antibodies against the mORF1 protein. Our result suggest that the product of mORF1 may function as a terminal region recognition factor (TRF), recognizing an internal region in TIR.

  • PDF

간암치료신약개발 및 이의 제제화 연구 (Replication of Hepatitis B Virus is repressed by tumor suppressor p53)

  • 이현숙;허윤실;이영호;김민재;김학대;윤영대;문홍모
    • 한국응용약물학회:학술대회논문집
    • /
    • 한국응용약물학회 1994년도 춘계학술대회 and 제3회 신약개발 연구발표회
    • /
    • pp.178-178
    • /
    • 1994
  • Hepatitis B Virus (HBV) is a DNA virus with a 3.2kb partially double-stranded genome. The life cycle of the virus involves a reverse transcription of the greater than genome length 3.5kb mRNA. This pegenomic RNA contains all the genetic information encoded by the virus and functions as an intermediate in viral replication. Tumor suppressor p53 has previously been shown to interact with the X-gene product of the HBV, which led us to hypothesize that p53 may act as a negative regulator of HBV replication and the role of the X-gene product is to overcome the p53-mediated restriction. As a first step to prove the above hypothesis, we tested whether p53 represses the propagation of HBV in in vitro replication system. By transient cotransfection of the plasmid containing a complete copy of the HBV genome and/or the plasmid encoding p53, we found that the replication of HBV is specifically blocked by wild-type p53. The levels of HBV DNA, HBs Ag and HBc/e Ag secreted in cell culture media were dramatically reduced upon coexpresion of wild-type p53 but not by the coexpression of the mutants of p53 (G154V and R273L). Furthermore, levels of RNAs originated from HBV genome were repressed more than 10 fold by the cotransfection of the p53 encoding plasmid. These results clearly states that p53 is a nesative regulator of the HBV replication. Next, to addresss the mechanism by which p53 represses the HBV replication, we performed the transient transfection experiments employing the pregenomic/core promoter-CAT(Chloramphenicol Acetyl Transferase) construct as a reporter. Cotransfection of wild-type p53 but not the mutant p53 expression plasmids repressed the CAT activity more than 8 fold. Integrating the above results, we propose that p53 represses the replication of HBV specifically by the down-regulation of the pregenomic/core promoter, which results in the reduced DNA synthesis of HBV. Currently, the mechanism by which HBV overcomes the observed p53-mediated restriction of replication is tinder investigation.

  • PDF

Function of the pentose phosphate pathway and its key enzyme, transketolase, in the regulation of the meiotic cell cycle in oocytes

  • Kim, Yunna;Kim, Eun-Young;Seo, You-Mi;Yoon, Tae Ki;Lee, Woo-Sik;Lee, Kyung-Ah
    • Clinical and Experimental Reproductive Medicine
    • /
    • 제39권2호
    • /
    • pp.58-67
    • /
    • 2012
  • Objective: Previously, we identified that transketolase (Tkt), an important enzyme in the pentose phosphate pathway, is highly expressed at 2 hours of spontaneous maturation in oocytes. Therefore, this study was performed to determine the function of Tkt in meiotic cell cycle regulation, especially at the point of germinal vesicle breakdown (GVBD). Methods: We evaluated the loss-of-function of Tkt by microinjecting Tkt double-stranded RNAs (dsRNAs) into germinal vesicle-stage oocytes, and the oocytes were cultured in vitro to evaluate phenotypic changes during oocyte maturation. In addition to maturation rates, meiotic spindle and chromosome rearrangements, and changes in expression of other enzymes in the pentose phosphate pathway were determined after Tkt RNA interference (RNAi). Results: Despite the complete and specific knockdown of Tkt expression, GVBD occurred and meiosis was arrested at the metaphase I (MI) stage. The arrested oocytes exhibited spindle loss, chromosomal aggregation, and declined maturation promoting factor and mitogen-activated protein kinase activities. The modified expression of two enzymes in the pentose phosphate pathway, Prps1 and Rbks, after Tkt RNAi and decreased maturation rates were amended when ribose-5-phosphate was supplemented in the culture medium, suggesting that the Tkt and pentose phosphate pathway are important for the maturation process. Conclusion: We concluded that Tkt and its associated pentose phosphate pathway play an important role in the MI-MII transition of the oocytes' meiotic cell cycle, but not in the process of GVBD.

The Protective Role of TLR3 and TLR9 Ligands in Human Pharyngeal Epithelial Cells Infected with Influenza A Virus

  • Han, Yan;Bo, Zhi-Jian;Xu, Ming-Yu;Sun, Nan;Liu, Dan-Hong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제18권3호
    • /
    • pp.225-231
    • /
    • 2014
  • In this study we aim to extensively investigate the anti-influenza virus immune responses in human pharyngeal epithelial cell line (Hep-2) and evaluate the protective role of Toll-like receptor (TLR) ligands in seasonal influenza A H1N1 (sH1N1) infections in vitro. We first investigated the expression of the TLRs and cytokines genes in resting and sH1N1 infected Hep-2 cells. Clear expressions of TLR3, TLR9, interleukin (IL)-6, tumour necrosis factor (TNF)-${\alpha}$ and interferon (IFN)-${\beta}$ were detected in resting Hep-2 cells. After sH1N1 infection, a ten-fold of TLR3 and TLR9 were elicited. Concomitant with the TLRs activation, transcriptional expression of IL-6, TNF-${\alpha}$ and IFN-${\beta}$ were significantly induced in sH1N1-infected cells. Pre-treatment of cells with poly I:C (an analog of viral double-stranded RNA) and CpG-ODN (a CpG-motif containing oligodeoxydinucleotide) resulted in a strong reduction of viral and cytokines mRNA expression. The results presented indicated the innate immune response activation in Hep-2 cells and affirm the antiviral role of Poly I:C and CpG-ODN in the protection against seasonal influenza A viruses.