• Title/Summary/Keyword: double shield tunneling

Search Result 5, Processing Time 0.017 seconds

Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum

  • Ning Jiao;Xing Wan;Jianwen Ding;Sai Zhang;Jinyu Liu
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.131-143
    • /
    • 2024
  • Shield tunneling construction commonly crosses underground pipelines in urban areas, resulting in soil loss and followed deformation of grounds and pipelines nearby, which may threaten the safe operation of shield tunneling. This paper investigated the pipeline deformation caused by double curved shield tunnels in soil-rock composite stratum in Nanjing, China. The stratum settlement equation was modified to consider the double shield tunneling. Moreover, a three dimensional finite element model was established to explore the effects of hard-layer ratio, tunnel curvature radius, pipeline buried depth and other influencing factors. The results indicate the subsequent shield tunnel would cause secondary disturbance to the soil around the preceding tunnel, resulting in increased pipeline and ground surface settlement above the preceding tunnel. The settlement and stress of the pipeline increased gradually as buried depth of the pipeline increased or the hard-layer ratio (the ratio of hard-rock layer thickness to shield tunnel diameter within the range of the tunnel face) decreased. The modified settlement calculation equation was consistent with the measured data, which can be applied to the settlement calculation of ground surface and pipeline settlement. The modified coefficients a and b ranged from 0.45 to 0.95 and 0.90 to 1.25, respectively. Moreover, the hard-layer ratio had the most significant influence on the pipeline settlement, but the tunnel curvature radius and the included angle between pipeline and tunnel axis played a dominant role in the scope of the pipeline settlement deformation.

Favorable driving direction of double shield TBM in deep mixed rock strata: Numerical investigations to reduce shield entrapment

  • Wen, Sen;Zhang, Chunshun;Zhang, Ya
    • Geomechanics and Engineering
    • /
    • v.17 no.3
    • /
    • pp.237-245
    • /
    • 2019
  • In deep mixed rock strata, a double shield TBM (DS-TBM) is easy to be entrapped by a large force during tunneling. In order to reduce the probability of the entrapment, we need to investigate a favorable driving direction, either driving with or against dip, which mainly associates with the angle between the tunneling axis and strike, ${\theta}$, as well as the dip angle of rock strata, ${\alpha}$. We, therefore, establish a 3DEC model to show the changes of displacements and contact forces in mixed rock strata through LDP (longitudinal displacement profile) and LFP (longitudinal contact force profile) curves at four characteristic points on the surrounding rock. This is followed by a series of numerical models to investigate the favorable driving direction. The computational results indicate driving with dip is the favorable tunneling direction to reduce the probability of DS-TBM entrapment, irrespective of ${\theta}$ and ${\alpha}$, which is not in full agreement with the guidelines proposed in RMR. From the favorable driving direction (i.e., driving with dip), the smallest contact force is found when ${\theta}$ is equal to $90^{\circ}$. The present study is therefore beneficial for route selection and construction design in TBM tunneling.

An overview of several techniques employed to overcome squeezing in mechanized tunnels; A case study

  • Eftekhari, Abbas;Aalianvari, Ali
    • Geomechanics and Engineering
    • /
    • v.18 no.2
    • /
    • pp.215-224
    • /
    • 2019
  • Excavation of long tunnels by shielded TBMs is a safe, fast, and efficient method of tunneling that mitigates many risks related to ground conditions. However, long-distance tunneling in great depth through adverse geological conditions brings about limitations in the application of TBMs. Among various harsh geological conditions, squeezing ground as a consequence of tunnel wall and face convergence could lead to cluttered blocking, shield jamming and in some cases failure in the support system. These issues or a combination of them could seriously hinder the performance of TBMs. The technique of excavation has a strong influence on the tunnel response when it is excavated under squeezing conditions. The Golab water conveyance tunnel was excavated by a double-shield TBM. This tunnel passes mainly through metamorphic weak rocks with up to 650 m overburden. These metamorphic rocks (Shales, Slates, Phyllites and Schists) together with some fault zones are incapable of sustaining high tangential stresses. Prediction of the convergence, estimation of the creeping effects and presenting strategies to overcome the squeezing ground are regarded as challenging tasks for the tunneling engineer. In this paper, the squeezing potential of the rock mass is investigated in specific regions by dint of numerical and analytical methods. Subsequently, several operational solutions which were conducted to counteract the challenges are explained in detail.

Deformation of large-diameter pipeline induced by double shield tunneling in silty fine sand strata

  • Ning Jiao;Ning Jiao;Zhaosheng Liao;Xing Wan;Xia Wei
    • Geomechanics and Engineering
    • /
    • v.39 no.2
    • /
    • pp.197-209
    • /
    • 2024
  • This paper investigated the deformation of a large-diameter pipeline caused by double shield tunnel construction in silty fine sand strata in Nantong, China, by on-site measurements and numerical simulations. Results indicate the pipe settlement curve was not symmetrical after the double tunnel construction in the silty fine sand strata. The construction of the subsequent tunnel had a significantly smaller impact on the stress and horizontal displacement of the pipeline than the preceding tunnel. There is a significant shading effect of the large-diameter pipeline, which would restrict the soil settlement above the pipeline. The adjusted settlement formula shows good agreement with the measured data, facilitating approximate calculations for both surface and pipe settlements. The correction factor a ranges from 0.50 to 0.90, while b ranges from 0.95 to 1.20.The elastic modulus and the burial depth of the pipeline had a great effect on the stress of the pipeline, but a smaller effect on its settlement. However, the soil loss rate greatly affected both the settlement and stress of the pipeline. Moreover, the pipeline risk level distribution map can quickly identify the risk status of the pipeline.

Recent Topics on Tunnel Engineering in Japan

  • Toshihisa Adachi
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.29-50
    • /
    • 2002
  • Based on the investigation results on the damages of some underground structures due to the severe Kobe Earthquake it concludes that the aseismicity of underground is far superior to that of aboveground structures. Therefore, at first, necessity to reconstruct strong cities especially by good use of underground space will be discussed. Then two non-circular shield-tunneling projects in Japan are discussed. The first is construction of the world's first shield driven double track subway tunnel of rectangular shape for the Kyoto Municipal Subway. This paper presents a report on the overall planning, the tests that were performed in the process of planning, and the results of driving. The second is the design of the Hirakata Tunnel, with three traffic lanes and shoulders on one side, which will be constructed as one of the tunnels for The New Meishin (Nagoya-Kobe) Expressways. This paper presents the feasibility study of the shield tunneling method, using the same design criteria as the non-circular, horseshoe section of mountain tunnel, to the equivalent section of the Hirakata Tunnel.

  • PDF