DOI QR코드

DOI QR Code

Deformation of large-diameter pipeline induced by double shield tunneling in silty fine sand strata

  • Ning Jiao (Institute of Geotechnical Engineering, School of Transportation, Southeast University) ;
  • Ning Jiao (Institute of Geotechnical Engineering, School of Transportation, Southeast University) ;
  • Zhaosheng Liao (Direct Affairs Center of the Yiyang Transportation Bureau) ;
  • Xing Wan (Institute of Geotechnical Engineering, School of Transportation, Southeast University) ;
  • Xia Wei (Institute of Geotechnical Engineering, School of Transportation, Southeast University)
  • Received : 2021.07.18
  • Accepted : 2024.10.10
  • Published : 2024.10.25

Abstract

This paper investigated the deformation of a large-diameter pipeline caused by double shield tunnel construction in silty fine sand strata in Nantong, China, by on-site measurements and numerical simulations. Results indicate the pipe settlement curve was not symmetrical after the double tunnel construction in the silty fine sand strata. The construction of the subsequent tunnel had a significantly smaller impact on the stress and horizontal displacement of the pipeline than the preceding tunnel. There is a significant shading effect of the large-diameter pipeline, which would restrict the soil settlement above the pipeline. The adjusted settlement formula shows good agreement with the measured data, facilitating approximate calculations for both surface and pipe settlements. The correction factor a ranges from 0.50 to 0.90, while b ranges from 0.95 to 1.20.The elastic modulus and the burial depth of the pipeline had a great effect on the stress of the pipeline, but a smaller effect on its settlement. However, the soil loss rate greatly affected both the settlement and stress of the pipeline. Moreover, the pipeline risk level distribution map can quickly identify the risk status of the pipeline.

Keywords

Acknowledgement

The research described in this paper was partially supported by the National Natural Science Foundation of China (Grant No. 51978159) and the National Key R&D Program of China (Grant No. 2015CB057803).

References

  1. Asakura, T. and Kojima, Y. (2003), "Tunnel maintenance in Japan", Tunn. Undergr. Sp. Tech., 18(2), 161-169. https://doi.org/10.1016/S0886-7798(03)00024-5.
  2. Boulefrakh, L., Hebali, H., Chikh, A., Bousahla, A.A., Tounsi, A. and Mahmoud, S.R. (2019), "The effect of parameters of visco-Pasternak foundation on the bending and vibration properties of a thick FG plate", Geomech. Eng., 18(2), 161-178. https://doi.org/10.12989/gae.2019.18.2.161.
  3. Civalek, O. and Ozturk, B. (2010), "Free vibration analysis of tapered beam-column with pinned ends embedded in Winkler-Pasternak elastic foundation", Geomech. Eng., 2(1), 45-56. https://doi.org/10.12989/gae.2010.2.1.045.
  4. Chen, R.P., Zhu, J., Liu, W. and Tang, X.W. (2011), "Ground movement induced by parallel EPB tunnels in silty soils", Tunn. Undergr. Sp. Tech., 26(1), 163-171. https://doi.org/10.1016/j.tust.2010.09.004.
  5. Deng, H., Fu, H., Shi, Y., Huang, Z. and Huang, Q. (2021), "Analysis of asymmetrical deformation of surface and oblique pipeline caused by shield tunneling along curved section", Symmetry, 13(12), 2396. https://doi.org/10.3390/sym13122396.
  6. Ding, J., Zhang, S., Zhang, H., Guo, C., Liao, Z. and Liu, H. (2021), "Ground settlement caused by shield tunneling in soil-rock composite strata", J. Perform. Constr. Fac., 35(5), 04021057. https://doi.org/10.1061/(ASCE)CF.1943-5509.0001631.
  7. Guan, X.M., Wang, G., Wang, X.C., An, J.Y., Lei, H.B. and Guan, W.Z. (2020), "Influences of shield tunnel construction of double-line metro on settlement of existing pipeline", J. Eng. Sci. Tech. Rev., 13(2), 167-173. https://doi.org/10.25103/jestr.132.20.
  8. Hasanpour, R. (2014), "Advance numerical simulation of tunneling by using a double shield TBM", Comput. Geotech., 57, 37-52. https://doi.org/10.1016/j.compgeo.2014.01.002.
  9. Heama, N., Jongpradist, P., Lueprasert, P., Suwansawat, S. and Jamsawang, P. (2021), "Comparative effects of adjacent loaded pile row on existing tunnel by 2D and 3D simulation models", Geomech. Eng., 27(2), 151-165. https://doi.org/10.12989/gae.2021.27.2.151.
  10. Hu, X., Cheng, J. and Ju, J.W. (2021), "Influence of the cutterhead configuration and operation parameters on the face stability of EPB shield tunnels in dry granular soils", Int. J. Geomech., 21(5), 04021050. https://doi.org/10.1061/(ASCE)GM.1943-5622.0002008
  11. Huang, M., Zhou, X., Yu, J., Leung, C.F. and Tan, J.Q.W. (2019), "Estimating the effects of tunnelling on existing jointed pipelines based on Winkler model", Tunn. Undergr. Sp. Tech., 86, 89-99. https://doi.org/10.1016/j.tust.2019.01.015
  12. Jallow, A., Ou, C.Y. and Lim, A. (2019), "Three-dimensional numerical study of long-term settlement induced in shield tunneling", Tunn. Undergr. Sp. Tech., 88, 221-236. https://doi.org/10.1016/j.tust.2019.02.021.
  13. Jeon, Y.J., Jeon, S.C., Jeon, S.J. and Lee, C.J. (2020), "Study on the behaviour of pre-existing single piles to adjacent shield tunnelling by considering the changes in the tunnel face pressures and the locations of the pile tips", Geomech. Eng., 21(2), 187-200. https://doi.org/10.12989/gae.2020.21.2.187.
  14. Joshi, T., Parkash, O. and Krishan, G. (2023a), "Estimation of energy consumption and transportation characteristics for slurry flow through a horizontal straight pipe using computational fluid dynamics", Phys. Fluids, 35(5). https://doi.org/10.1063/5.0146534.
  15. Joshi, T., Parkash, O. and Krishan, G. (2023b), "Slurry flow characteristics through a horizontal pipeline at different Prandtl numbers", Powder Technol., 413, 118008. https://doi.org/10.1016/j.powtec.2022.118008.
  16. Joshi, T., Parkash, O., Gallegos, R.K.B. and Krishan, G. (2024), "Parametric investigation of slurry transport: Computational insight into the impact of particle composition and Prandtl numbers", Phys. Fluids, 36(2). https://doi.org/10.1063/5.0187126.
  17. Jiao, N., Wan, X., Ding, J., Zhang, S. and Liu, J. (2024), "Pipeline deformation caused by double curved shield tunnel in soil-rock composite stratum", Geomechanics and Engineering, 36(2), 131-143. https://doi.org/10.12989/gae.2024.36.2.131
  18. Katebi, H., Rezaei, A. H., Hajialilue-Bonab, M., Tarifard, A. (2015), "Assessment the influence of ground stratification, tunnel and surface buildings specifications on shield tunnel lining loads (by FEM)", Tunn. Undergr. Sp. Tech., 49, 67-78. https://doi.org/10.1016/j.tust.2015.04.004.
  19. Klar, A., Elkayam, I. and Marshall, A.M. (2016), "Design oriented linear-equivalent approach for evaluating the effect of tunneling on pipelines", J. Geotech. Geoenviron. Eng., 142(1), 04015062. https://doi.org/10.1061/(ASCE)GT.1943-5606.0001376.
  20. Klar, A., Marshall, A.M., Soga, K. and Mair, R.J. (2008), "Tunneling effects on jointed pipelines", Can. Geotech. J., 45(1), 131-139. https://doi.org/10.1139/T07-068.
  21. Klar, A., Vorster, T.E.B., Soga, K. and Mair, R.J. (2007), "Elastoplastic solution for soil-pipe-tunnel interaction", J. Geotech. Geoenviron. Eng., 133(7), 782-792. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:7(782).
  22. Li, L., Du, X. and Zhou, J. (2020), "Numerical simulation of site deformation induced by shield tunneling in typical upper-soft-lower-hard soil-rock composite stratum site of changchun", KSCE J. Civil Eng., 24(10), 3156-3168. https://doi.org/10.1007/s12205-020-0124-0.
  23. Li, X., Wang, T. and Yang, Y. (2020), "An investigation into the tunnel-soil-pipeline interaction by in situ measured settlements of the pipelines", Adv. Civil Eng., 2020. https://doi.org/10.1155/2020/8850380.
  24. Liu, G.S., Sun, L.W., Wang, B., Wu, S.M., Hong, C.P. and Hong, Q. (2012), "The numerical analysis and field measurements of the shield tunnel passing through the pipeline groups", Appl. Mech. Mater., 226, 1488-1494. https://doi.org/10.4028/www.scientific.net/amm.226-228.1488.
  25. Liu, J.L. and Liu, J.Q. (2011), "Influence of tunnel excavation on adjacent underground pipeline", Adv. Mater. Res., 150, 1777-1781. https://doi.org/10.4028/www.scientific.net/amr.150-151.1777
  26. Liu, X., Wang, F., Huang, J., Wang, S., Zhang, Z. and Nawnit, K. (2019), "Grout diffusion in silty fine sand stratum with high groundwater level for tunnel construction", Tunn. Undergr. Sp. Tech., 93, 103051. https://doi.org/10.1016/j.tust.2019.103051.
  27. Mackett, R.L. and Edwards, M. (1998), "The impact of new urban public transport systems: will the expectations be met?", Transportation Research Part A: Policy and practice, 32(4), 231-245. https://doi.org/10.1016/S0965-8564(97)00041-4.
  28. Marshall, A.M., Klar, A. and Mair, R.J. (2010), "Tunneling beneath buried pipes: view of soil strain and its effect on pipeline behavior", J. Geotech. Geoenviron. Eng., 136(12), 1664-1672. https://doi.org/10.1061/(asce)gt.1943-5606.0000390.
  29. Mathew, G.V. and Lehane, B.M. (2013), "Numerical back-analyses of greenfield settlement during tunnel boring", Can. Geotech. J., 50(2), 145-152. https://doi.org/10.1139/cgj-2011-0358
  30. Moller, S.C. and Vermeer, P.A. (2008), "On numerical simulation of tunnel installation", Tunn. Undergr. Sp. Tech., 23(4), 461-475. https://doi.org/10.1016/j.tust.2007.08.004.
  31. Nawel, B. and Salah, M. (2015), "Numerical modeling of two parallel tunnels interaction using three-dimensional finite elements method", Geomech. Eng., 9(6), 775-791. https://doi.org/10.12989/gae.2015.9.6.775.
  32. Ocak, I. (2013), "Interaction of longitudinal surface settlements for twin tunnels in shallow and soft soils: the case of Istanbul Metro", Environ. Earth Sci., 69(5), 1673-1683. https://doi.org/10.1007/s12665-012-2002-7.
  33. Peck, R.B. (1969), "Deep excavations and tunneling in soft ground", Proceedings of the 7th International Conference on Mechanics and Foundation Engineering, Mexico City, Mexico.
  34. Rezaei, A.H., Shirzehhagh, M. and Golpasand, M.R.B. (2019), "EPB tunneling in cohesionless soils: A study on Tabriz Metro settlements", Geomech. Eng., 19(2), 153-165. https://doi.org/10.12989/gae.2019.19.2.153.
  35. Rowe, R.K., Lo, K.Y. and Kack, G.J. (1983), "A method of estimating surface settlement above tunnels constructed in soft ground", Can. Geotech. J., 20(1), 11-22. https://doi.org/10.1139/t83-002.
  36. Sae-Long, W., Limkatanyu, S., Hansapinyo, C., Prachasaree, W., Rungamornrat, J. and Kwon, M. (2021), "Nonlinear flexibility-based beam element on Winkler-Pasternak foundation", Geomech. Eng., 24(4), 371-388. https://doi.org/10.12989/gae.2021.24.4.371.
  37. Sarfarazi, V. and Tabaroei, A. (2020), "Numerical simulation of the influence of interaction between Qanat and tunnel on the ground settlement", Geomech Eng., 23(5), 455-466. https://doi.org/10.12989/gae.2020.23.5.455.
  38. Shi, P. (2015), "Surface wave propagation effects on buried segmented pipelines", J. Rock Mech. Geotech. Eng., 7(4), 440-451, https://doi.org/ 10.1016/j.jrmge.2015.02.011
  39. Sun, S., Rong, C., Wang, H., Cui, L. and Shi, X. (2021), "The ground settlement and the existing pipeline response induced by the nonsynchronous construction of a twin-tunnel", Adv. Civil Eng., 2021. https://doi.org/10.1155/2021/8815304.
  40. Suwansawat, S. and Einstein, H.H. (2007), "Describing settlement troughs over twin tunnels using a superposition technique", J. Geotech Geoenviron. Eng., 133(4), 445-468. https://doi.org/10.1061/(ASCE)1090-0241(2007)133:4(445).
  41. Vorster, T.E., Klar, A., Soga, K. and Mair, R.J. (2005), "Estimating the effects of tunneling on existing pipelines", J. Geotech. Geoenviron. Eng., 131(11), 1399-1410. https://doi.org/10.1061/(ASCE)1090-0241(2005)131:11(1399).
  42. Wang, J., Cao, A., Wu, Z., Wang, H., Liu, X., Li, H. and Sun, Y. (2021), "Experiment and numerical simulation on grouting reinforcement parameters of ultra-shallow buried double-arch tunnel", Appl. Sci., 11(21), 10491. https://doi.org/10.3390/app112110491.
  43. Wei, G., Hu, S., Xing, J.J. and Ye, Q. (2016), "Effect of double-line parallel shield excavation on adjacent underground pipelines", J. Eng. Sci. Tech. Rev., 9(1), 167-173. https://doi.org/10.25103/jestr.091.25.
  44. Wham, B.P., Argyrou, C. and O'Rourke, T.D. (2016), "Jointed pipeline response to tunneling-induced ground deformation", Can. Geotech. J., 53(11), 1794-1806. https://doi.org/10.1139/cgj-2016-0054.
  45. Zhang, C., Yu, J. and Huang, M. (2012), "Effects of tunnelling on existing pipelines in layered soils", Comput. Geotech., 43, 12-25. https://doi.org/10.1016/j.compgeo.2012.01.011.
  46. Zhang, Z., Xu, W., Nie, W. and Deng, L. (2021), "DEM and theoretical analyses of the face stability of shallow shield cross-river tunnels in silty fine sand", Comput. Geotech., 130, 103905. https://doi.org/10.1016/j.compgeo.2020.103905.
  47. Zhu, J. and Zhu, D. (2020), "Deformation of pipelines induced by the construction of underlying twin-tunnel", Tehnicki Vjesnik - Technical Gazette, 27(4), 1311-1315. https://doi.org/10.17559/tv-20191118080659.