• Title/Summary/Keyword: double scale model

Search Result 126, Processing Time 0.022 seconds

Analysis of Spatial Variability in a Korean Paddy Field Using Median Polish Detrending (Median polish 기법을 이용한 한국 논의 공간변이 분석)

  • Chung, Sun-Ok;Jung, In-Kyu;Sung, Je-Hoon;Sudduth, Kenneth A.;Drummond, Scott T.
    • Journal of Biosystems Engineering
    • /
    • v.33 no.5
    • /
    • pp.362-369
    • /
    • 2008
  • There is developing interest in precision agriculture in Korea, despite the fact that typical Korean fields are less than 1 ha in size. Describing within-field variability in typical Korean production settings is a fundamental first step toward determining the size of management zones and the inter-relationships between limiting factors, for establishment of site-specific management strategies. Measurements of rice (Oriza Sativa L) yield, chlorophyll content, and soil properties were obtained in a small (100-m by 30-m) Korean rice paddy field. Yield data were manually collected on 10-m by 5-m grids (180 samples with 3 samples in each of 60 grid cells) and chlorophyll content was measured using a Minolta SPAD 502 in 2-m by 2-m grids. Soil samples were collected at 275 points to compare results from sampling at different scales. Ten soil properties important for rice production in Korea were determined through laboratory analyses. Variogram analysis and point kriging with and without median polishing were conducted to determine the variability of the measured parameters. Influence of variogram model selection and other parameters on the interpretation of the data was investigated. For many of the data, maximum values were greater than double the minimum values, indicating considerable spatial variability in the small paddy field, and large-scale spatial trends were present. When variograms were fit to the original data, the limits of spatial dependency for rice yield and SP AD reading were 11.5 m and 6.5 m, respectively, and after detrending the limits were reduced to 7.4 m and 3.9 m. The range of spatial dependency for soil properties was variable, with several having ranges as short as 2 m and others having ranges greater than 30 m. Kriged maps of the variables clearly showed the presence of both large-scale (trend) variability and small-scale variability in this small field where it would be reasonable to expect uniformity. These findings indicate the potential for applying the principles and technology of precision agriculture for Korean paddy fields. Additional research is needed to confirm the results with data from other fields and crops.d similar tendency with the result for the frequency less than 20 Hz, but the width of change was reduced highly.

The Mediating Effects of Mattering and Self-Acceptance in the Relationship between Socially Prescribed Perfectionism and Social Anxiety (사회부과 완벽주의와 사회불안의 관계에서 대인존재감과 자기수용의 매개효과)

  • Choi, Yujoung;Hong, Hye-Young
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.1
    • /
    • pp.259-270
    • /
    • 2020
  • The purpose of this study was to examine the mediating effects of mattering and unconditional self-acceptance in the relationship between college student socially-prescribed perfectionism and social anxiety. For this purpose, a questionnaire was conducted for students in college and a total of 408 copies were used for analysis. The instruments used in the measurement were socially prescribed perfectionism scale(HFMPS), social anxiety scale, mattering scale, and unconditional self-acceptance. The collected data were analyzed by descriptive statistics and correlation analysis using SPSS 21.0, and the structural equation model and mediating effects were verified using Mplus 7.0. The results of the study are as follows. First socially-prescribed perfectionism showed a positive correlation with social anxiety but negative correlation with mattering and unconditional self-acceptance. And there was a positive correlation between mattering and unconditional self-acceptance but negative correlation with social anxiety. Second, the mediating effect of mattering was confirmed in the relationship between socially-prescribed perfectionism and social anxiety. Third, the mediating effect of unconditional self-acceptance was confirmed in the relationship between socially-prescribed perfectionism and social anxiety. Fourth, the effect of double mediation of mattering and unconditional self-acceptance was confirmed in relation to socially-prescribed perfectionism and social anxiety in college students. Based on these findings, the implications of the study were presented and the limitations of the study and suggestions for further research were discussed.

A Magnetic Energy Recovery Switch Based Terminal Voltage Regulator for the Three-Phase Self-Excited Induction Generators in Renewable Energy Systems

  • Wei, Yewen;Kang, Longyun;Huang, Zhizhen;Li, Zhen;Cheng, Miao miao
    • Journal of Power Electronics
    • /
    • v.15 no.5
    • /
    • pp.1305-1317
    • /
    • 2015
  • Distributed generation systems (DGSs) have been getting more and more attention in terms of renewable energy use and new generation technologies in the past decades. The self-excited induction generator (SEIG) occupies an important role in the area of energy conversion due to its low cost, robustness and simple control. Unlike synchronous generators, the SEIG has to absorb capacitive reactive power from the outer device aiming to stabilize the terminal voltage at load changes. This paper presents a novel static VAR compensator (SVC) called a magnetic energy recovery switch (MERS) to serve as a voltage controller in SEIG powered DGSs. In addition, many small scale SEIGs, instead of a single large one, are applied and devoted to promote the generation efficiency. To begin with, an expandable mathematic model based on a d-q equivalent circuit is created for parallel SEIGs. The control method of the MERS is further improved with the objective of broadening its operating range and restraining current harmonics by parameter optimization. A hybrid control strategy is developed by taking both of the stand-alone and grid-connected modes into consideration. Then simulation and experiments are carried out in the case of single and double SEIG(s) generation. Finally, the measurement results verify that the proposed DGS with SVC-MERS achieves a better stability and higher feasibility. The major advantages of the mentioned variable reactive power supplier, when compared to the STATCOM, include the adoption of a small DC capacitor, line frequency switching, simple control and less loss.

Structural Design based on the Phase Field Design Method to Enhance the Patch Antenna Performance (패치안테나 성능 향상을 위한 페이즈필드 설계법 기반의 형상 설계)

  • Lee, Sangyeub;Shin, Hyundo;Yoo, Jeonghoon
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.1
    • /
    • pp.17-22
    • /
    • 2017
  • In this study, we designed the metallic reception part of a patch antenna using the phase field design method. The design object function is formulated with the S-parameter value which represent the return loss so that it is targeted to maximize radiation efficiency at a target frequency. The initial model of a patch antenna was designed via the ordinary theory based approach and its performance was enhanced by changing the structural configuration of the metallic part using the phase field design method combined with the double well potential functions. The final shape was proposed by removing the gray scale area along the structural boundary by employing a cut-off method. The proposed shape shows that the radiation efficiency at target frequency is significantly improved compared with the initial patch shape. The finite element analysis and optimization precess was performed using the commercial package COMSOL and Matlab programming.

A Study on Perceived Time Pressure and Time Use: Focusing on the Employed Men and Women in Korea by Using 1999 and 2009 Time Diary Data (취업남녀의 시간부족인식과 시간활용: 1999년과 2009년의 생활시간자료 비교)

  • Cha, Seung-Eun
    • Journal of Family Resource Management and Policy Review
    • /
    • v.15 no.3
    • /
    • pp.131-151
    • /
    • 2011
  • This study attempted to estimate the level of perceived lack of time in Korean society, to link it to time management and to identify the possible association that accounts for time shortage. I employed the gender perspective in order to reveal the dynamics and complexity of the perception of a lack of time in the population. The sample for the study was drawn from the 1999 and 2009 Korean time diary data collected by the Korean National Statistical Office. From the original data, I selected a sample of second shift families(men and women who are presently working and raising children) living in metropolitan areas(including Seoul and six major urban areas in Korea). The dependent variable was time pressure measured by a single-item question on a four-point likert scale. The results of the study showed that working mothers perceived a greater time shortage as compared to working fathers. The time use pattern showed change during the periods, indicating that people worked fewer hours in paid labor and enjoyed more leisure hours and personal care hours. However, on average, people seemed to have experienced a greater time lack in 2009 as compared to 1999. The results from the ordered logistic regression model revealed that even though there were similarities in the impact of relevant factors, men's perception of a lack of time was more closely linked with their work role and social status, while for women, this perception was influenced by work and family duties. This indicates that Korean working mothers and fathers are facing a double jeopardy of time shortage in terms of combining their work and family roles. As a result, the level of time pressure by gender is converging toward a "never enough" phase. These findings generated policy implications and detailed suggestions.

  • PDF

The Study of Three-wheel with Active Tilt Control(ATC) Systems in Design - Concentrated on Three Wheel Motor Bike (틸팅시스템을 적용한 삼륜차량 디자인 연구 - 삼륜 스쿠터를 중심으로 -)

  • 곽용민;안철홍
    • Archives of design research
    • /
    • v.16 no.1
    • /
    • pp.15-24
    • /
    • 2003
  • In the latest date, vehicles are offered to the drivers, not only the skill for shifting but the pleasure for driving vehicles that are existing today can be a social problem because the amount of vehicles that are increasing give difficulty for the traffic facilities and parking expansion. these day 80% of four wheeled vehicle carriers single or double person the reducing car scale is an important thing about the financial good use resources of energy and the storage of environment. A solution for these problem is a new general idea vehicle development for one or two person to ride. For the sake of these reasons, first, the information is collected and analyzed about existing foreign countries production. Car external design is intended by mathematical modeling, simulation and model testing about frame system of new concept specially we would like to show three wheeled vehicle that has active tilt control(ATC) system. This car tilts actively by the center rotation wheel and frame when the vehicle turns.

  • PDF

Anti-collapse performance analysis of unequal span steel-concrete composite substructures

  • Meng, Bao;Li, Liangde;Zhong, Weihui;Tan, Zheng;Zheng, Yuhui
    • Steel and Composite Structures
    • /
    • v.39 no.4
    • /
    • pp.383-399
    • /
    • 2021
  • In the study, three 1:3-scale unequal span steel-concrete composite substructures with top-seat angle and double web angle connection were designed and identified as specimens GTSDWA-0.6, GTSDWA-1.0, and GTSDWA-1.4. Pseudo-static tests and refined numerical model analysis were conducted to examine the anti-progressive collapse performance of a semi-rigid steel-concrete composite substructure. The results indicated that the failure modes of the three specimens revealed that the fracture occurred in the root of the long leg of the top/seat angle in tension at the connection. With increases in the span ratio of the left and right composite beams, the bearing capacities of the composite substructures decreased, and the corresponding displacement increased. With respect to GTSDWA-0.6 and GTSDWA-1.4, the resistance due to the short composite beam corresponded to 62% and 60%, respectively, and the total resistance provided by the short composite beam exceeded that of the long composite beam. With respect to GTSDWA-1.0, the resistance due to the left and right composite beams was similar. All three specimens underwent the flexure mechanism and flexure-axial mixed mechanism stages. They resisted the external load mainly via the flexure mechanism. Moreover, the addition of stiffeners on both sides of the top and seat angles is advantageous in terms of improving the collapse resistance and ductility of unequal span composite substructures.

Study on the progressive collapse resistance of CP-FBSP connections in L-CFST frame structure

  • Xiong, Qingqing;Wu, Wenbo;Zhang, Wang;Chen, Zhihua;Liu, Hongbo;Su, Tiancheng
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.437-450
    • /
    • 2022
  • When the vertical load-bearing members in high-rise structures fail locally, the beam-column joints play an important role in the redistribution of the internal forces. In this paper, a static laboratory test of three full-scale flush flange beam-reinforced connections with side and cover plates (CP-FBSP connection) with double half-span steel beams and single L-shaped columns composed of concrete-filled steel tubes (L-CFST columns) was conducted. The influence of the side plate width and cover plate thickness on the progressive collapse resistance of the substructure was thoroughly analyzed. The failure mode, vertical force-displacement curves, strain variation, reaction force of the pin support and development of internal force in the section with the assumed plastic hinge were discussed. Then, through the verified finite element model, the corresponding analyses of the thickness and length of the side plates, the connecting length between the steel beam flange and cover plate, and the vertical-force eccentricity were carried out. The results show that the failure of all the specimens occurred through the cracking of the beam flange or the cover plate, and the beam chord rotations measured by the test were all greater than 0.085 rad. Increasing the length, thickness and width of the side plates slightly reduced the progressive collapse resistance of the substructures. The vertical-force eccentricity along the beam length reduced the progressive collapse resistance of the substructure. An increase in the connecting length between the beam flange and cover plate can significantly improve the progressive collapse resistance of substructures.

A study on the regional climate change scenario for impact assessment on water resources (수자원 영향평가에 활용 가능한 지역기후변화 시나리오 연구)

  • Im, Eun-Soon;Kwon, Won-Tae;Bae, Deg-Hyo
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.12 s.173
    • /
    • pp.1043-1056
    • /
    • 2006
  • Our ultimate purpose is to investigate the potential change in regional surface climate due to the global warming and to produce higher quality regional surface climate information over the Korean peninsula for comprehensive impact assessment. Toward this purpose, we carried out two 30-year long experiments, one for present day conditions (covering the period 1971-2000) and one for near future climate conditions (covering the period 2021-2050) with a regional climate model (RegCM3) using a one-way double-nested system. In order to obtain the confidence in a future climate projection, we first verify the model basic performance of how the reference simulation is realistic in comparison with a fairly dense observation network. We then examine the possible future changes in mean climate state as well as in the frequency and intensity of extreme climate events to be derived by difference between climate condition as a baseline and future simulated climate states with increased greenhouse gas. Emphasis in this study is placed on the high-resolution spatial/temporal aspects of the climate change scenarios under different climate settings over Korea generated by complex topography and coastlines that are relevant on a regional scale.

A Prediction Model for Removal of Non-point Source Pollutant Considering Clogging Effect of Sand Filter Layers for Rainwater Recycling (빗물 재활용을 위한 모래 정화층의 폐색특성을 고려한 비점오염원 제거 예측 모델 연구)

  • Ahn, Jaeyoon;Lee, Dongseop;Han, Shinin;Jung, Youngwook;Choi, Hangseok
    • Journal of the Korean Geotechnical Society
    • /
    • v.30 no.6
    • /
    • pp.23-39
    • /
    • 2014
  • An artificial rainwater reservoir installed in urban areas for recycling rainwater is an eco-friendly facility for reducing storm water effluence. However, in order to recycle the rainwater directly, the artificial rainwater reservoir requires an auxiliary system that can remove non-point source pollutants included in the initial rainfall of urban area. Therefore, the conventional soil filtration technology is adopted to capture non-point source pollutants in an economical and efficient way in the purification system of artificial rainwater reservoirs. In order to satisfy such a demand, clogging characteristics of the sand filter layers with different grain-size distributions were studied with real non-point source pollutants. For this, a series of lab-scale chamber tests were conducted to make a prediction model for removal of non-point source pollutants, based on the clogging theory. The laboratory chamber experiments were carried out by permeating two types of artificially contaminated water through five different types of sand filter layers with different grain-size distributions. The two artificial contaminated waters were made by fine marine-clay particles and real non-point source pollutants collected from motorcar roads of Seoul, Korea. In the laboratory chamber experiments, the concentrations of the artificial contaminated water were measured in terms of TSS (Total Suspended Solids) and COD (Chemical Oxygen Demand) and compared with each other to evaluate the performance of sand filter layers. In addition, the accumulated weight of pollutant particles clogged in the sand filter layers was estimated. This paper suggests a prediction model for removal of non-point source pollutants with theoretical consideration of the physical characteristics such as the grain-size distribution and composition, and change in the hydraulic conductivity and porosity of sand filter layers. The lumped parameter ${\theta}$ related with the clogging property was estimated by comparing the accumulated weight of pollutant particles obtained from the laboratory chamber experiments and calculated from the prediction model based on the clogging theory. It is found that the lumped parameter ${\theta}$ has a significant influence on the amount of the pollutant particles clogged in the pores of sand filter layers. In conclusion, according to the clogging prediction model, a double-sand-filter layer consisting of two separate layers: the upper sand-filter layer with the effective particle size of 1.49 mm and the lower sand-filter layer with the effective particle size of 0.93 mm, is proposed as the optimum system for removing non-point source pollutants in the field-sized artificial rainwater reservoir.