• Title/Summary/Keyword: double composite

Search Result 462, Processing Time 0.035 seconds

Impact Behavior at Composite Material of Aluminium Double Cantilever Beam with Two Kinds of Materials (이종재료의 알루미늄 이중 외팔보 복합재의 충격 거동)

  • Cho, Jae-Ung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.3
    • /
    • pp.421-426
    • /
    • 2007
  • This study was analyzed dynamically by finite element method about the results of experiments which the double cantilever beam specimens with two kinds of materials were applied by impact load. And they were compared with each other as the simulation data applied onto impact velocities of 6.4 and 18.47 m/s. The crack energy release rate, force and displacement of block were calculated numerically by computer. As the numerical simulation data of specimen analyzed in this study approached the experimental data, the inspection of this specimen model suggested in this paper could be reasonable for the numerical simulation.

  • PDF

Remarkable Stability of Graphene/Ni-Al Layered Double Hydroxide Hybrid Composites for Electrochemical Capacitor Electrodes

  • Lee, Jeong Woo;In, Su-Il;Kim, Jong-Duk
    • Journal of Electrochemical Science and Technology
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 2013
  • Graphene/Ni-Al layered double hydroxide (LDH) hybrid materials were synthesized by a hydrothermal reaction. Hexagonal Ni-Al LDH particles nucleated and grew on graphene sheets, thus preventing restacking of the graphene sheets and aggregation of the Ni-Al LDH nanoparticles upon drying. Electrode made from the graphene/Ni-Al LDH hybrid materials showed a substantial improvement in electrochemical capacitance relative to those made with pure Ni-Al LDH nanoparticles. In addition, the graphene/Ni-Al LDH hybrid composite materials showed remarkable stability after 4000 cycles with over 100% capacitance retention. These materials are thus very promising for use in electrochemical capacitor electrodes.

Geometrically nonlinear meshfree analysis of 3D-shell structures based on the double directors shell theory with finite rotations

  • Mellouli, Hana;Jrad, Hanen;Wali, Monther;Dammak, Fakhreddine
    • Steel and Composite Structures
    • /
    • v.31 no.4
    • /
    • pp.397-408
    • /
    • 2019
  • In this paper, a geometrically nonlinear meshfree analysis of 3D various forms of shell structures using the double director shell theory with finite rotations is proposed. This theory is introduced in the present method to remove the shear correction factor and to improve the accuracy of transverse shear stresses with the consideration of rotational degrees of freedom.The present meshfree method is based on the radial point interpolation method (RPIM) which is employed for the construction of shape functions for a set of nodes distributed in a problem domain. Discrete system of geometrically nonlinear equilibrium equations solved with the Newton-Raphson method is obtained by incorporating these interpolations into the weak form. The accuracy of the proposed method is examined by comparing the present results with the accurate ones available in the literature and good agreements are found.

Seismic Performance of a Hollow Composite Column (강합성 중공 기둥의 내진 성능)

  • Han, Taek Hee;Kim, Jung Hun;Lim, Nam Hyoung;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.2
    • /
    • pp.215-226
    • /
    • 2008
  • A column test was performed for a hollow composite column to evaluate its seismic performance. The seismic performances of a hollow composite column and a reinforced concrete (RC) column were evaluated and compared by quasi-static tests. Lateral displacements and lateral loads of the column specimens were measured during tests. Ductilities, absorbed energy, equivalent damping ratios, and damage indices were calculated from the recorded data. From the test results, the hollow composite column showed a seismic performance superior to the column in terms of double moment capacity, ultimate energy, and energy absorption.

Structural Analysis of Thin-Walled, Multi-Celled Composite Blades with Elliptic Cross-Sections (다중세포로 구성된 박벽 타원형 단면 복합재료 블레이드의 구조해석)

  • 박일주;정성남
    • Composites Research
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2004
  • In this study, a refined beam analysis model has been developed for multi-celled composite blades with elliptic cross-sections. Reissner's semi-complimentary energy functional is introduced to describe the beam theory and also to deal with the mixed-nature of the formulation. The wail of elliptic sections is discretized into finite number of elements along the contour line and Gauss integration is applied to obtain the section properties. For each cell of the section, a total of four continuity conditions are used to impose proper constraints for the section. The theory is applied to single- and double-celled composite blades with elliptic cross-sections and is validated with detailed finite element analysis results.

MODELING OF NONLINEAR CYCLIC LOAD BEHAVIOR OF I-SHAPED COMPOSITE STEEL-CONCRETE SHEAR WALLS OF NUCLEAR POWER PLANTS

  • Ali, Ahmer;Kim, Dookie;Cho, Sung Gook
    • Nuclear Engineering and Technology
    • /
    • v.45 no.1
    • /
    • pp.89-98
    • /
    • 2013
  • In recent years steel-concrete composite shear walls have been widely used in enormous high-rise buildings. Due to high strength and ductility, enhanced stiffness, stable cycle characteristics and large energy absorption, such walls can be adopted in the auxiliary building; surrounding the reactor containment structure of nuclear power plants to resist lateral forces induced by heavy winds and severe earthquakes. This paper demonstrates a set of nonlinear numerical studies on I-shaped composite steel-concrete shear walls of the nuclear power plants subjected to reverse cyclic loading. A three-dimensional finite element model is developed using ABAQUS by emphasizing on constitutive material modeling and element type to represent the real physical behavior of complex shear wall structures. The analysis escalates with parametric variation in steel thickness sandwiching the stipulated amount of concrete panels. Modeling details of structural components, contact conditions between steel and concrete, associated boundary conditions and constitutive relationships for the cyclic loading are explained. Later, the load versus displacement curves, peak load and ultimate strength values, hysteretic characteristics and deflection profiles are verified with experimental data. The convergence of the numerical outcomes has been discussed to conclude the remarks.

Experimental investigation of interlaminar mechanical properties on carbon fiber stitched CFRP laminates

  • Iwahori, Yutaka;Ishikawa, Takashi;Watanabe, Naoyuki;Ito, Akira;Hayashi, Yoichi;Sugimoto, Sunao
    • Advanced Composite Materials
    • /
    • v.16 no.2
    • /
    • pp.95-113
    • /
    • 2007
  • Experimental investigations of interlaminar mechanical properties for carbon fiber reinforced plastic (CFRP) laminates were carried out using aramid fiber ($Kevlar^{(R)}$-29 1000d) and carbon fiber (TR40-1K 612d, Mitsubishi Rayon) stitching. Various carbon fiber (CF) stitch densities were used to prepare a number of CF stitched CFRP laminates for double cantilever beam (DCB) tests. An insert tongue-type loading fixture, developed by the Japan Aerospace Exploration Agency (formerly the National Aerospace Laboratory of Japan), was also employed in the DCB test. Interlaminar tension tests were carried out under an out-of-plane directional loading using a single CF stitch thread in the CFRP laminates. The DCB test results clarified that the relationship between the volume fractions of the CF stitch thread ($V_{ft}$) and mode I critical energy release rate ($G_{Ic}$) showed a mostly linear function with a higher gradient than that of the $Kevlar^{(R)}$ stitched CFRP laminates. The CF stitched CFRP tension test results indicated that the consumption energy per unit area ($E_i$) was larger than that of $Kevlar^{(R)}$ stitched CFRP laminates.

The effects of microparticles on the crack propagation (균열 진전에 대한 미세 입자의 영향)

  • 정보영;박성도;윤영기;윤희석
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.1495-1498
    • /
    • 2003
  • Recently, self-healing methods of a cracked matrix, especially polymeric composite materials, became the center of engineering researchers. In this paper, we summarized the self-healing concept for polymeric composite materials and investigated the effect of microparticle on the crack growth behavior in colorless and transparent matrix by experimental observation to describe the crack propagation around the microparticle inside epoxy matrix composite. Compression splitting test for the specimen involving microparticle was conducted. In addition, FE analysis was pursued to present the stress contour around microparticle in the matrix. Through the experiments and FE analysis, we found that the size. relative position, bonding condition and relative stiffness of microparticle are important parameters to decide the direction of crack propagation, which is related to the rupture of microparticle for self-healing

  • PDF