• Title/Summary/Keyword: double arrays

Search Result 47, Processing Time 0.035 seconds

Influences of direction for hexagonal-structure arrays of lens patterns on structural, optical, and electrical properties of InGaN/GaN MQW LEDs

  • Lee, Kwang-Jae;Kim, Hyun-June;Park, Dong-Woo;Jo, Byoung-Gu;Oh, Hye-Min;Hwang, Jeong-Woo;Kim, Jin-Soo;Lee, Jin-Hong;Leem, Jae-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.153-153
    • /
    • 2010
  • Recently, to develop GaN-based light-emitting diodes (LEDs) with better performances, various approaches have been suggested by many research groups. In particular, using the patterned sapphire substrate technique has shown the improvement in both internal quantum efficiency and light extraction properties of GaN-based LEDs. In this paper, we discuss the influences of the direction of the hexagonal-structure arrays of lens-shaped patterns (HSAPs) formed on sapphire substrates on the crystal, optical, and electrical properties of InGaN/GaN multi-quantum-well (MQW) LEDs. The basic direction of the HSAPs is normal (HSAPN) with respect to the primary flat zone of a c-plane sapphire substrate. Another HSAP tilted by 30o (HSAP30) from the HSAPN structure was used to investigate the effects of the pattern direction. The full width at half maximums (FWHMs) of the double-crystal x-ray diffraction (DCXRD) spectrum for the (0002) and (1-102) planes of the HSAPN are 320.4 and 381.6 arcsecs., respectively, which are relatively narrower compared to those of the HSP30. The photoluminescence intensity for the HSAPN structure was ~1.2 times stronger than that for the HSAP30. From the electroluminescence (EL) measurements, the intensity for both structures are almost similar. In addition, the effects of the area of the individual lens pattern consisting of the hexagonal-structure arrays are discussed using the concept of the planar area fraction (PAF) defined as the following equation; PAF = [1-(patterns area/total unit areas)] For the relatively small PAF region up to 0.494, the influences of the HSAP direction on the LED characteristics were significant. However, the direction effects of the HSAP became small with increasing the PAF.

  • PDF

Design of a Vision Chip for Edge Detection with an Elimination Function of Output Offset due to MOSFET Mismatch (MOSFET의 부정합에 의한 출력옵셋 제거기능을 가진 윤곽검출용 시각칩의 설계)

  • Park, Jong-Ho;Kim, Jung-Hwan;Lee, Min-Ho;Shin, Jang-Kyoo
    • Journal of Sensor Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.255-262
    • /
    • 2002
  • Human retina is able to detect the edge of an object effectively. We designed a CMOS vision chip by modeling cells of the retina as hardwares involved in edge detection. There are several fluctuation factors which affect characteristics of MOSFETs during CMOS fabrication process and this effect appears as output offset of the vision chip which is composed of pixel arrays and readout circuits. The vision chip detecting edge information from input image is used for input stage of other systems. Therefore, the output offset of a vision chip determine the efficiency of the entire performance of a system. In order to eliminate the offset at the output stage, we designed a vision chip by using CDS(Correlated Double Sampling) technique. Using standard CMOS process, it is possible to integrate with other circuits. Having reliable output characteristics, this chip can be used at the input stage for many applications, like targe tracking system, fingerprint recognition system, human-friendly robot system and etc.

Field Tests of Hydraulic Rock Splitting Technique Using Arrays of Injection Holes with Guide Slots (유도슬롯과 주입공 배열을 이용한 수압암반절개 현장 실험)

  • Park, Jong Oh;Woo, Ik
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.405-415
    • /
    • 2019
  • The cracks induced by hydraulic rock splitting technique are formed in the direction parallel to the free plane, which is perpendicular to the minimum principal stress of the ground, or is affected by the pre-existing microcracks. In this study, the hydraulic rock splitting experiments were conducted in which the guide slot was engraved in the direction parallel to the borehole axis on the biotite granite slope, and the hydraulic pressure was injected through the double packer pressure and interval section. The test results show that the cracks along with the guide slots were induced either by the double packer pressurization or the injection of hydraulic pressure into interval section, some cracks extended across the boreholes. Therefore, the hydraulic rock splitting test is expected to control efficiently the induced cracks if the guide slots are engraved in the direction of splitting and a big flow rate is applied.

Design of a Time-Multiplexing CNN Chip (시다중처리 셀룰러 신경망 칩설계)

  • 박병일;정금섭;전흥우;신경욱
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.4 no.2
    • /
    • pp.505-516
    • /
    • 2000
  • Cellular Neural Networks(CNN) is a nonlinear information-processing system that has a locally connected characteristic and is widely used in the real-time high speed image processing. In this paper, a practical system approach of time-multiplexing CNN implementations suitable for processing large and complex images using small CNN arrays is presented and $6\times6$ CNN hardware is designed for the processing of a large image. While previous implementations are mostly suitable for black and white applications because of the thresholded outputs, our approach is especially suitable for applications in gray image processing due to the analog nature of the state node. CNN chip is designed using a 0.65${\mu}{\textrm}{m}$ 2P2M(double poly, double metal) N-Well CMOS process technology. It contains about 15,400 devices on an area of about $1.85\times1.75$ md. The designed $6\times6$ CNN is tested for the edge detection of a large image input and it's performance is verified.

  • PDF

Fabrication of Planar Type Inductor Using FeTaN Magnetic thin Films

  • Kim, Chung-Sik;Seok Bae;Jeong, Jong-Han;Nam, Seoung-Eui;Kim, Hyoung-June
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2000.09a
    • /
    • pp.532-538
    • /
    • 2000
  • A double rectangular spiral inductor is fabricated using FeTaN films. The inductor is composed of internal coils sandwiched by magnetic layers. Characteristics of inductor performance are investigated with an emphasis on planarization of magnetic films. In the absence of the planarization process, the grating topology of upper magnetic films over coil arrays degrades the soft magnetic properties and the inductor performance. It also induces a longitudinal magnetic anisotropy with the easy axis aligned to the magnetic flux direction. This alignment prevents the upper magnetic films from contributing to the total induction. Glass bonding is a viable method for achieving a completely planar inductor structure. The planar inductor with glass bonding shows excellent performance : inductance of 1.1 H, Q factor of 7 (at 5 MHz), and the dc current capability up to 100 mA.

  • PDF

Performance Compression of RAID5 Read/write to File and Stripe Size (파일과 스트라이프 크기에 대한 RAID5의 읽기/쓰기 성능 비교)

  • Choi, Gwi-Yoel;Park, Kye-Won
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.763-767
    • /
    • 2005
  • RAID were proposed to stored double data or used to parity logging methode for error recovery. We describe a technique for automating the execution of redundant disk array operation, including recovery from errors, independent of array architecture. RAID5 provide highly reliable cost effective secondary storage with high performance for read access and large write accessed. It discusses the two architectural techniques used in disk arrays, striping across multiple disks to improve performance and redundancy to improve reliability. In this paper we compare with performance and reliability in RAID5 real/write to file and stripe size. than suggest to algorithm.

  • PDF

Interleaved High Step-Up Boost Converter

  • Ma, Penghui;Liang, Wenjuan;Chen, Hao;Zhang, Yubo;Hu, Xuefeng
    • Journal of Power Electronics
    • /
    • v.19 no.3
    • /
    • pp.665-675
    • /
    • 2019
  • Renewable energy based on photovoltaic systems is beginning to play an important role to supply power to remote areas all over the world. Owing to the lower output voltage of photovoltaic arrays, high gain DC-DC converters with a high efficiency are required in practice. This paper presents a novel interleaved DC-DC boost converter with a high voltage gain, where the input terminal is interlaced in parallel and the output terminal is staggered in series (IPOSB). The IPOSB configuration can reduce input current ripples because two inductors are interlaced in parallel. The double output capacitors are charged in staggered parallel and discharged in series for the load. Therefore, IPOSB can attain a high step-up conversion and a lower output voltage ripple. In addtion, the output voltage can be automatically divided by two capacitors, without the need for extra sharing control methods. At the same time, the voltage stress of the power devices is lowered. The inrush current problem of capacitors is restrained by the inductor when compared with high gain converters with a switching-capacitor structure. The working principle and steady-state characteristics of the converter are analyzed in detail. The correctness of the theoretical analysis is verified by experimental results.

Characteristics of InGaAs/GaAs/AlGaAs Double Barrier Quantum Well Infrared Photodetectors

  • Park, Min-Su;Kim, Ho-Seong;Yang, Hyeon-Deok;Song, Jin-Dong;Kim, Sang-Hyeok;Yun, Ye-Seul;Choe, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.324-325
    • /
    • 2014
  • Quantum wells infrared photodetectors (QWIPs) have been used to detect infrared radiations through the principle based on the localized stated in quantum wells (QWs) [1]. The mature III-V compound semiconductor technology used to fabricate these devices results in much lower costs, larger array sizes, higher pixel operability, and better uniformity than those achievable with competing technologies such as HgCdTe. Especially, GaAs/AlGaAs QWIPs have been extensively used for large focal plane arrays (FPAs) of infrared imaging system. However, the research efforts for increasing sensitivity and operating temperature of the QWIPs still have pursued. The modification of heterostructures [2] and the various fabrications for preventing polarization selection rule [3] were suggested. In order to enhance optical performances of the QWIPs, double barrier quantum well (DBQW) structures will be introduced as the absorption layers for the suggested QWIPs. The DBWQ structure is an adequate solution for photodetectors working in the mid-wavelength infrared (MWIR) region and broadens the responsivity spectrum [4]. In this study, InGaAs/GaAs/AlGaAs double barrier quantum well infrared photodetectors (DB-QWIPs) are successfully fabricated and characterized. The heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIPs are grown by molecular beam epitaxy (MBE) system. Photoluminescence (PL) spectroscopy is used to examine the heterostructures of the InGaAs/GaAs/AlGaAs DB-QWIP. The mesa-type DB-QWIPs (Area : $2mm{\times}2mm$) are fabricated by conventional optical lithography and wet etching process and Ni/Ge/Au ohmic contacts were evaporated onto the top and bottom layers. The dark current are measured at different temperatures and the temperature and applied bias dependence of the intersubband photocurrents are studied by using Fourier transform infrared spectrometer (FTIR) system equipped with cryostat. The photovoltaic behavior of the DB-QWIPs can be observed up to 120 K due to the generated built-in electric field caused from the asymmetric heterostructures of the DB-QWIPs. The fabricated DB-QWIPs exhibit spectral photoresponses at wavelengths range from 3 to $7{\mu}m$. Grating structure formed on the window surface of the DB-QWIP will induce the enhancement of optical responses.

  • PDF

Design and Implementation of True Random Noise Radar System

  • Min, Woo-Ki;Kim, Cheol-Hoo;Lukin, Constantin A.;Kim, Jeong-Phill
    • Journal of electromagnetic engineering and science
    • /
    • v.9 no.3
    • /
    • pp.130-140
    • /
    • 2009
  • The design theory and experimental results of a true random noise radar system are presented in this paper. Target range information can be extracted precisely by correlation processing between the delayed reference and the signal received from a target, and the velocity information by the Doppler processing with successive correlation data. A K-band noise radar system was designed using random FM noise signal, and the characteristics of the fabricated system were examined with laboratory and outdoor experiments. A C-band random FM noise signal was generated by applying a low-frequency white Gaussian noise source to VCO(Voltage Controlled Oscillator), and a K-band Tx noise signal with 100 MHz bandwidth was obtained by using a following frequency multiplier. Two modified wave-guide horn arrays were designed and fabricated, and used for the Tx and Rx antennas. The required amount of Tx/Rx isolation was attained by using a coupling cancellation circuit as well as keeping them apart with predetermined spacing. A double down-conversion scheme was used in the Rx and reference channels, respectively, for easy post processing such as correlation and Doppler processing. The implemented noise radar performance was examined with a moving bicycle and a very high-speed target with a velocity of 150 m/s. The results extracted by the Matlab simulation using the logging data were found to be in a reasonable agreement with the expected results.

An Experimental Study on the Optimum Design of Sirocco Fan by Using Taguchi Method (다구찌 방법을 이용한 시로코 홴의 최적설계에 관한 실험적 연구)

  • Kim, Jang Kweon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.6
    • /
    • pp.761-768
    • /
    • 1999
  • This paper is studied to find the optimum condition of double-inlet Sirocco fan installed in an indoor PAC for low noise operation by the Taguchi method. The goal of this study is to obtain the best combination of each control factor which results in a desired flowrate of Sirocco fan with minimum variability. In this study, the parameter design of the Taguchi method is adopted for robust design by the dynamic characteristic analysis using orthogonal arrays and S/N ratios. The flowrate measurements are conducted by using a multiple-nozzle-type fan tester according to the orthogonal array L9($3^4$). The results of this study can be summarized as follows ; (i) The optimum condition of control factor is a set of where A is an inner to outer diameter ratio($D_1/D_2$), B is a width to outer diameter ratio($L/D_2$), C is a blade attachment angle(${\theta}$) and D is a number of blade(Z), (ii) The flowrate under the optimum condition satisfies the equation $y=0.0384{\cdot}M$ where M is a signal factor, namely number of revolution. The flowrate performance improves about 7.3% more largely as compared with the current condition, which results in about 35RPM reduction of number of revolution for the target flowrate $18.5m^3/min$, and (iii) The sensitivity analysis shows that the major factors in contribution to flowrate performance are A, B, and D ; the percentage contributions of each control factor are 44.01%(Z), 26.77%($D_1/D_2$) and 20.42%($L/D_2$).