• Title/Summary/Keyword: dose model

Search Result 1,821, Processing Time 0.036 seconds

Gradual Reduction of Drug Dosage on an HIV Infection Model with Helper-independent CTL (보조세포 비의존형 CTL 반응이 고려된 HIV 감염 모형에 대한 점진적 약물 감소 기법의 적용)

  • Chang Hyeygjeon;Jo Nam Hoon;Shim Hyungbo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.10 no.12
    • /
    • pp.1148-1154
    • /
    • 2004
  • The goal of this paper is to verity that the gradual reduction of drug dose (GRDD), which has already been shown by authors to be effective for a simplified HIV infection model, still works for a more realistic model. While the simplified HIV infection model does not take into account an helper-independent CTL, the five state nonlinear model proposed by Wodarz describes the dynamics of both helper-dependent and helper-independent CTL in HIV infection. In this paper, it is shown that, by applying GRDD to Wodarz's five state HIV infection model, the state of HIV infected patient converges to that of non-progressor whose immune response is excited so that his symptom would not be developed into AIDS. Roughly speaking, GRDD is 'slow reduction of dose after the maximum dose for a certain period.' It turns out that an equilibrium representing non-progressor is locally asymptotically stable for the most values of drug dosage, which is required to hold in order to apply GRDD. Simulation results establish that GRDD is still considerably effective both for an AIDS patient and a patient who has been on HAART for a long time.

Estimating Human Exposure to Benzo(a)pyrene through Multimedia/Multiroute Exposure Scenario (다매체/다경로 노출을 고려한 benzo(a)pyrene의 총 인체 노출량 예측)

  • Moon Ji Young;Yang Ji Yeon;Lim Young Wook;Park Seong Eun;Shin Dong Chun
    • Environmental Analysis Health and Toxicology
    • /
    • v.18 no.4
    • /
    • pp.255-269
    • /
    • 2003
  • The objective of this study was to estimate human exposure to benzo (a)pyrene through multimedia/multi-pathway exposure scenario. The human exposure scenario for benzo(a)pyrene was consisted of 12 multiple exposure pathways, and the multipathway human exposure model based on this scenario constituted. In this study, the multipathway human exposure model was used to estimate the concentrations in the exposure contact media, human intake factors and lifetime average daily dose (LAD $D_{model}$) of benzo(a)pyrene in the environment. Sensitivity analysis was performed to identify the important parameters and Monte-Carlo simulation was undertaken to examine the uncertainty of the model. The total LAD $D_{model}$ was estimated to be 5.52${\times}$10$^{-7}$ mg/kg-day (2.06${\times}$10$^{-7}$ -8.65${\times}$10$^{-7}$ mg/kg-day) using the multipathway human exposure model. The inhalation dose accounted for 78% of the total LADD, whereas ingestion and dermal contact intake accounted for 20.2% and 1.8% of the total exposure, respectively. Based on the sensitivity analysis, the most significant contributing input parameter was benzo (a)pyrene concentration of ambient air. Consequently, exposure via inhalation in outdoor/indoor air was the highest compared with the exposure via other medium/pathways.

Analysis of Cosmic Radiation Dose of People by Abroad Travel (일반인들의 항공여객기 이용 시 우주방사선 피폭선량 비교 분석)

  • Jang, Donggun;Shin, Sanghwa
    • Journal of radiological science and technology
    • /
    • v.41 no.4
    • /
    • pp.339-344
    • /
    • 2018
  • Humans received an exposure dose of 2.4 mSv of natural radiation per year, of which the contribution of spacecraft accounts for about 75%. The crew of the aircraft has increased radiation exposure doses based on cosmic radiation safety management regulations There is no reference to air passengers. Therefore, in this study, we measured the radiation exposure dose received in the sky at high altitude during flight, and tried to compare the radiation exposure dose received by ordinary people during flight. We selected 20 sample specimens, including major tourist spots and the capital by continent with direct flights from Incheon International Airport. Using the CARI-6/6M model and the NAIRAS model, which are cosmic radiation prediction models provided at the National Radio Research Institute, we measured the cosmic radiation exposure dose by the selected flight and departure/arrival place. In the case of exposure dose, Beijing was the lowest at $2.87{\mu}Sv$ (NAIRAS) and $2.05{\mu}Sv$ (CARI - 6/6M), New York had the highest at $146.45{\mu}Sv$ (NAIRAS) and $79.42{\mu}Sv$ (CARI - 6/6M). We found that the route using Arctic routes at the same time and distance will receive more exposure dose than other paths. While the dose of cosmic radiation to be received during flight does not have a decisive influence on the human body, because of the greater risk of stochastic effects in the case of frequent flights and in children with high radiation sensitivity Institutional regulation should be prepared for this.

A Chemotherapy-Diffusion Model for the Cancer Treatment and Initial Dose Control

  • Abdel-Gawad, Hamdy Ibrahim;Saad, Khaled Mmohamed
    • Kyungpook Mathematical Journal
    • /
    • v.48 no.3
    • /
    • pp.395-410
    • /
    • 2008
  • A one site chemotherapy agent-diffusion model is proposed which accounts for diffusion of chemotherapy agent, normal and cancer cells. It is shown that, by controlling the initial conditions, consequently an initial dose of the chemotherapy agent, the system is guaranteed to evolute towards a target equilibrium state. Or, growth of the normal cells occurs against decay of the cancer cells. Effects of diffusion of chemotherapy-agent and cells are investigated through numerical computations of the concentrations in square and triangular cancer sites.

Pharmacokinetic-Pharmacodynamic Modeling of a Direct Thrombin Inhibitor, Argatroban, in Rats

  • Park, Eun-Hye;Shin, Beom-Soo;Yun, Chi-Ho;Lee, Mann-Hyung;Yoo, Sun-Dong
    • Journal of Pharmaceutical Investigation
    • /
    • v.39 no.5
    • /
    • pp.373-379
    • /
    • 2009
  • This study was conducted to develop a pharmacokinetic-pharmacodynamic (PK/PD) model of a direct thrombin inhibitor, argatroban to predict the concentration-effect profiles in rats. Argatroban was i.v. injected to rats at 0. 2, 0.8 and 3.2 mg/kg doses (n = 4-5 per dose), and plasma drug levels were determined by a validated LC/MS/MS assay. The pharmacokinetics of argatroban was linear over the i.v. dose range studied. The thrombin time (TT) and the activated partial thromboplastin time (aPTT) were measured in rat plasma and they were found to linearly increase with increasing the dose. A 2-compartment pharmacokinetic model linked with an indirect response pharmacodynamic model was successfully utilized to evaluate the drug concentration-response relationship.

Calculation of Dobe Distributions in Brachytherapy by Personal Microcomputer (Microcomputer를 이용한 근접조사 장치의 선량분포 계산)

  • Chu S. S.;Park C. Y.
    • Radiation Oncology Journal
    • /
    • v.2 no.1
    • /
    • pp.129-137
    • /
    • 1984
  • In brachytherapy, it is important to determine the positions of the radiation sources which are inserted into a patient and to estimate the dose resulting from the treatment. Calculation of the dose distribution throughout an implant is so laborious that it is rarely done by manual methods except for model cases. It is possible to calculate isodose distributions and tumor doses for individual patients by the use of a microcomputer. In this program, the dose rate and dose distributions are calculated by numerical integration of point source and the localization of radiation sources are obtained from two radiographs at right angles taken by a simulator developed for the treatment planning. By using microcomputer for brachytherapy, we obtained the result as following 1. Dose calculation and irradiation time for tumor could be calculated under one or five seconds after input data. 2. It was same value under$\pm2\%$ error between dose calculation by computer program and measurement dose. 3. It took about five minutes to reconstruct completely dose distribution for intracavitary irradiation. 4. Calculating by computer made remarkly reduction of dose errors compared with Quimby's calculation in interstitial radiation implantation. 5. It could calculate the biological isoffect dose for high and low dose rate activities.

  • PDF

A Study on Cardiotoxicity of DA-125, a New Anticancer Antibiotic (새로운 항암성 항생물질 DA-125의 심장독성에 대한 평가)

  • ;;;;;Toshihiko Watanabe
    • Biomolecules & Therapeutics
    • /
    • v.1 no.1
    • /
    • pp.9-19
    • /
    • 1993
  • DA-125, a new anthracycline antibiotic, showed antitumor activity against animal tumors and human tumors. Therefore we studied the cardiotoxic potential of DA-125 in hamsters and rats as a part of safety research, and compared it with that of doxorubicin(DXR). In acute cardiotoxicity test model used hamsters DA-125 was administered intravenously at a dose of 6, 9, 12 mg/kg, and DXR at 3 mg/kg was given. The electrocardiogram(ECG) of hamsters was recorded for 30 minutes after administration. The DA-125 caused slight ECG alterations at a dose of 6 mg/kg. At a dose of 12 mg/kg DA-125 induced moderate to remarkable changes in ECG like decrease of heart rate, widening of PR interval and 07 interval, and A-V block in 3 out of 5 animals. The severity of ECG alteration at 12 mg/kg of DA-125 was similar to that at 3mg/kg of DXR and these changes caused by DA-125 and DXR recovered within 10 minutes after injection. In chronic cardiotoxicity test model used rats, DA-125 was administered intravenously once a week for three weeks at a dose of 6, 9mg/kg and DXR was given at a dose of 6mg/kg. Electrocardiogram was recorded every week from the start of administration to 2 weeks after the last administration and the animals were sacrificed for histological heart examination at 1 week or 2 weeks after the last administration. DA-125 did not cause any abnormal changes in ECG and in histological heart examination due to administration, but DXR caused widening of ST segment, QRS complex, and QT interval from 1 week after administration and these changes were continued to necropsy. These alterations in ECG were accompanied by cardiac histological lesions such as vacuolation in myocardiac cells, interstitial edema and necrosis of myocytes. These results suggest that DA-125 is less cardiotoxic than DXR.

  • PDF

Antihyperalgesic Effects of Ethosuximide and Mibefradil, T-type Voltage Activated Calcium Channel Blockers, in a Rat Model of Postoperative Pain (흰쥐의 술 후 통증 모델에서 T형 칼슘 통로 차단제인 Ethosuximide와 Mibefradil의 항통각과민 효과)

  • Shinn, Helen Ki;Cha, Young Deog;Han, Jeong Uk;Yoon, Jeong Won;Kim, Boo Seong;Song, Jang Ho
    • The Korean Journal of Pain
    • /
    • v.20 no.2
    • /
    • pp.92-99
    • /
    • 2007
  • Background: A correlation between a T-type voltage activated calcium channel (VACC) and pain mechanism has not yet been established. The purpose of this study is to find out the effect of ethosuximide and mibefradil, representative selective T-type VACC blockers on postoperative pain using an incisional pain model of rats. Methods: After performing a plantar incision, rats were stabilized on plastic mesh for 2 hours. Then, the rats were injected with ethosuximide or mibefradil, intraperitoneally and intrathecally. The level of withdrawal threshold to the von Frey filament near the incision site was determined and the dose response curves were obtained. Results: After an intraperitoneal ethosuximide or mibefradil injection, the dose-response curve showed a dose-dependent increase of the threshold in a withdrawal reaction. After an intrathecal injection of ethosuximide, the threshold of a withdrawal reaction to mechanical stimulation increased and the increase was dose-dependent. After an intrathecal injection of mibefradil, no change occurred in either the threshold of a withdrawal reaction to mechanical stimulation or a dose-response curve. Conclusions: The T-type VACC blockers in a rat model of postoperative pain showed the antihyperalgesic effect. This effect might be due to blockade of T-type VACC, which was distributed in the peripheral nociceptors or at the supraspinal level. Further studies of the effect of T-type VACC on a pain transmission mechanism at the spinal cord level would be needed.

Radiation Dose Measurement and Model Comparison at the Flight Level (비행고도 상에서의 우주방사선 관측 및 모델 비교)

  • Yi, Wonhyeong;Kim, Jiyoung;Jang, Kun-Il
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.26 no.2
    • /
    • pp.91-97
    • /
    • 2018
  • High-energy charged particles are comprised of galactic cosmic rays and solar energetic particles which are mainly originated from the supernova explosion, active galactic nuclei, and the Sun. These primary charged particles which have sufficient energy to penetrate the Earth's magnetic field collide with the Earth's upper atmosphere, that is $N_2$ and $O_2$, and create secondary particles and ionizing radiation. The ionizing radiation can be measured at commercial flight altitude. So it is recommended to manage radiation dose of aircrew as workers under radiation environment to protect their health and safety. However, it is hard to deploy radiation measurement instrument to commercial aircrafts and monitor radiation dose continuously. So the numerical model calculation is performed to assess radiation exposure at flight altitude. In this paper, we present comparison result between measurement data recorded on several flights and estimation data calculated using model and examine the characteristics of the radiation environment in the atmosphere.

Analysis of the Work Time and the Collective Dose by Correcting the Learning-Forgetting Curve Model in Decommissioning of a Nuclear Facility

  • ChoongWie Lee;Hee Reyoung Kim;Jin-Woo Lee
    • Journal of Radiation Protection and Research
    • /
    • v.48 no.1
    • /
    • pp.20-27
    • /
    • 2023
  • Background: As the number of nuclear facilities nearing their pre-determined design life increases, demand is increasing for technology and infrastructure related to the decommissioning and decontamination (D&D) process. It is necessary to consider the nature of the dismantling environment constantly changing and the worker doing new tasks. A method was studied that can calculate the effect of learning and the change in work time on the work process, according to the learning-forgetting curve model (LFCM). Materials and Methods: The LFCM was analyzed, and input values and scenarios were analyzed for substitution into the D&D process of a nuclear facility. Results and Discussion: The effectiveness and efficiency of the training were analyzed. It was calculated that skilled workers can receive a 16.9% less collective radiation dose than workers with only basic training. Conclusion: Using these research methods and models, it was possible to calculate the change in the efficiency of workers performing new tasks in the D&D process and the corresponding reduction in the work time and collective dose.