Abstract
The goal of this paper is to verity that the gradual reduction of drug dose (GRDD), which has already been shown by authors to be effective for a simplified HIV infection model, still works for a more realistic model. While the simplified HIV infection model does not take into account an helper-independent CTL, the five state nonlinear model proposed by Wodarz describes the dynamics of both helper-dependent and helper-independent CTL in HIV infection. In this paper, it is shown that, by applying GRDD to Wodarz's five state HIV infection model, the state of HIV infected patient converges to that of non-progressor whose immune response is excited so that his symptom would not be developed into AIDS. Roughly speaking, GRDD is 'slow reduction of dose after the maximum dose for a certain period.' It turns out that an equilibrium representing non-progressor is locally asymptotically stable for the most values of drug dosage, which is required to hold in order to apply GRDD. Simulation results establish that GRDD is still considerably effective both for an AIDS patient and a patient who has been on HAART for a long time.