• Title/Summary/Keyword: doppler shift

Search Result 210, Processing Time 0.022 seconds

Packet Acquisition for DS/CDMA-based LEO Satellite communication System (DS/CDMA 저궤도 위성 통신 시스템의 패킷 초기 동기 연구)

  • 김동희;김영초;이상운;황금찬
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.5B
    • /
    • pp.871-878
    • /
    • 2000
  • A divided matched filter-reference filter(MF-RF) technique for LEO satellite packet transmission is proposed to increase the packet throughput in the presence of severe Doppler shift and fading. To overcome the severe Doppler shift, the divided matched filter is adopted where the integration region of matched filter is divided and ouputs of divided matched filer are added to decide the correct pseudo-noise (PN) phase. To maintain the constant false alarm rate in time varying interference and fading channel, the adaptive threshold for acquisition is obtained from the reference filter. As a performance measure, average acquisition time and packet throughput are used, and the effets of the parameters, i.e., Doppler shift, chip energy to noise ratio, user velocity, standard deviation of shadowing, and preamble length are shown.

  • PDF

Optimal Radar Pulse Compression Processing Algorithm and the Resulting Optimal Codes for Pulse Compressed Signals (레이더 펄스 압축 신호의 최적 탐색 알고리즘 개발 및 최적 코드에 관한 연구)

  • 김효준;이명수;김영기;송문호
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.25 no.6B
    • /
    • pp.1100-1105
    • /
    • 2000
  • The most widely used radar pulse compression technique is correlation processing using Barker code. This technique enhances detection sensitivity but, unfortunately, suffers from the addition of range sidelobes which sometimes will degrade the performance of radar systems. In this paper, our proposed optimal algorithm eliminates the sidelobes at the cost of additional processing and is evaluated in the presence of Doppler shift. We then propose optimal codes with regard to the proposed algorithm and the performance is compared against the traditional correlation processing with Barker codes. The proposed processing using optimal codes will be shown to be superior over the traditional processing in the presence of Doppler shift.

  • PDF

Animal Tracking System Using the Doppler Effect for Single LEO Satellite (도플러 효과를 이용한 단일 저궤도위성의 동물추적시스템 개발)

  • Lee, Jeong-Nam;Jang, Yeong-Geun;Lee, Byeong-Hun;Mun, Byeong-Yeong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.34 no.11
    • /
    • pp.61-69
    • /
    • 2006
  • Position determination accuracy is strongly depending on how much precisely and frequently satellite receiver measures transmitted signals from terminals on target animals when Doppler effect is applied for position determination. ARGOS satellite system has shown relatively high position determination accuracy by operating multiple satellites, which enable operator to get more Doppler shift data from terminals. In case of animal tracking mission with single satellite, however, it is difficult for the satellite receiver to receive transmitted signals from terminals frequently during short period that satellite passes over ground terminals. This is one of the main sources to decrease position accuracy on target animals. In this paper, the Doppler rate estimation is implemented to increase the number of Doppler shift data received by single satellite. It is proved that the relatively high position determination accuracy with increased number of estimated data can be obtained. We also suggest that the Doppler rate estimation is applicable for position determination system with single satellite.

Delay and Doppler Profiler based Channel Transfer Function Estimation for 2×2 MIMO Receivers in 5G System Targeting a 500km/h Linear Motor Car

  • Suguru Kuniyoshi;Rie Saotome;Shiho Oshiro;Tomohisa Wada
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.9
    • /
    • pp.8-16
    • /
    • 2023
  • In Japan, high-speed ground transportation service using linear motors at speeds of 500 km/h is scheduled to begin in 2027. To accommodate 5G services in trains, a subcarrier spacing frequency of 30 kHz will be used instead of the typical 15 kHz subcarrier spacing to mitigate Doppler effects in such high-speed transport. Furthermore, to increase the cell size of the 5G mobile system, multiple base station antennas will transmit identical downlink (DL) signals to form an expanded cell size along the train rails. In this situation, the forward and backward antenna signals are Doppler-shifted in opposite directions, respectively, so the receiver in the train may suffer from estimating the exact Channel Transfer Function (CTF) for demodulation. In a previously published paper, we proposed a channel estimator based on Delay and Doppler Profiler (DDP) in a 5G SISO (Single Input Single Output) environment and successfully implemented it in a signal processing simulation system. In this paper, we extend it to 2×2 MIMO (Multiple Input Multiple Output) with spatial multiplexing environment and confirm that the delay and DDP based channel estimator is also effective in 2×2 MIMO environment. Its simulation performance is compared with that of a conventional time-domain linear interpolation estimator. The simulation results show that in a 2×2 MIMO environment, the conventional channel estimator can barely achieve QPSK modulation at speeds below 100 km/h and has poor CNR performance versus SISO. The performance degradation of CNR against DDP SISO is only 6dB to 7dB. And even under severe channel conditions such as 500km/h and 8-path inverse Doppler shift environment, the error rate can be reduced by combining the error with LDPC to reduce the error rate and improve the performance in 2×2 MIMO. QPSK modulation scheme in 2×2 MIMO can be used under severe channel conditions such as 500 km/h and 8-path inverse Doppler shift environment.

Range estimation of underwater vehicles using superimposed chirp signals (중첩된 처프 신호를 이용한 수중 이동체의 거리 추정)

  • Hyung-in Ra;Kyung-won Lee;Chang-hyun Youn;Ki-man Kim
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.6
    • /
    • pp.511-518
    • /
    • 2023
  • Accurate ranging is one of the key factors in the test and evaluation process of underwater vehicles. In particular, when estimating range using Time of Arrival (ToA) values, signals such as Linear Frequency Modulation (LFM), a chirp signal, are highly applicable due to their correlated nature. However, in a Doppler shift environment with mobility, measurement errors may occur due to the range-Doppler coupling effect. In this paper, we propose a signal that compensates for the distance-Doppler coupling effect to reduce the measurement error of the arrival time value. The proposed signal is constructed by superimposing two types of LFM signals, and the range-Doppler coupling effect can be minimized. Through simulations, it is confirmed that the proposed signal is a way to compensate for the distance-Doppler coupling effect in the distance estimation of underwater mobile bodies, reducing the measurement error of the arrival time value.

Real-Time Implementation of Doppler Beam Sharpening in a SMP Multi-Core Kernel (대칭형 멀티코어 커널에서 DBS(Doppler Beam Sharpening) 알고리즘 실시간 구현)

  • Kong, Young-Joo;Woo, Seon-Keol
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.11 no.4
    • /
    • pp.251-257
    • /
    • 2016
  • The multi-core technology has become pervasive in embedded systems. An implementation of the Doppler Beam Sharpening algorithm that improves the azimuth resolution by using doppler frequency shift is possible only in multi-core environment because of the amount of calculation. In this paper, we design of multi-core architecture for a real time implementation of DBS algorithm. And based on designed structure, we produce a DBS image on P4080 board.

A Study on Effects of Antenna Diversity in Doppler Spread Environments (도플러 확산 환경에서의 안테나 다이버시티 효과에 관한 연구)

  • Lee Jong-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.3
    • /
    • pp.510-515
    • /
    • 2005
  • Doppler spread can occur due to the relative movement of transmitter and receiver. The Doppler frequency shift varies as the relative location and the velocity of transceivers change. This Doppler spread may seriously degrade the performance of OFDM system which is considered to be very efficient for multimedia wireless communication. Therefore, applying the method of receiver diversity, we analyze the degree of BER improvement in Doppler spread environments to investigate the effectiveness of the chosen methods according to various wireless channels.

A study on the development of Pulsed Doppler System using Auto-Correlation (Auto-Correlation을 이용한 펄스 도플러 시스템에 관한 연구)

  • Lim, Chun-Sung;Rang, Chung-Shin;Lee, Hang-Sei;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.705-708
    • /
    • 1988
  • Ultrasound Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. Pulsed Doppler System uses Phase detector and zerocrossing method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time domain, had been fabricated. But time-domain analyzing such as audio evaluation and zerocrossing detection for instantaneous and mean frequency measurement doesn't, provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency domain technique to improve system performance. In this paper, we describe a unit which is composed of Pulsed Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of blood Signal.

  • PDF

A study on the development of CW(Continuous-Wave) Doppler System using FFT (FFT를 이용한 연속초음파 도플러 장치에 관한 연구)

  • Lee, Dae-Hyung;Kang, Chung-Shin;Park, Sei-Hyun;Kim, Young-Kil
    • Proceedings of the KIEE Conference
    • /
    • 1988.07a
    • /
    • pp.709-712
    • /
    • 1988
  • Ultrasonic Doppler Diagnostic System utilizes the Doppler effect for measurement of blood velocity. The sign of the Doppler frequency shift represents blood flow direction. CW(Continuous-Wave) Doppler System uses quadrature detection and phase rotation method to produce simultaneous independent audio and velocity signals for forward and reverse blood flow direction in the time-domain, had been fabricated. But time-domain analyzing such as audio evaluation and zero- crossing detection for instantaneous and mean frequnecy measurement do not provide both an accurate and quantitative result. Therefore, it is necessary to adopt frequency-domain technique to improve system performance. In this paper, we describe a unit which is composed of CW Doppler System and real-time spectrum analyzer (installed TMS 32010 DSP Chip). This unit shows time-dependent spectrum variation and mean velocity of Blood signal.

  • PDF

Analysis of Formula 1 Sound by Doppler Effect (도플러 효과에 의한 포물러 1 소리의 분석)

  • Lee, Chang-Young
    • The Journal of the Acoustical Society of Korea
    • /
    • v.32 no.5
    • /
    • pp.385-392
    • /
    • 2013
  • The sound generated from the formula 1 (F1) machine is characteristic in that the frequency felt by the listener changes drastically by the Doppler effect as the machine bypasses him. In textbooks, longitudinal Doppler effect is usually described. In this paper, we consider a more general case where the listener is away from the rectilinear path of the machine's motion. As the machine bypasses the listener, in this case, the frequency drops not abruptly but gradually, the temporal width for the frequency drop depending on the machine's speed. The frequency shift felt by the listener is analyzed as functions of time and/or machine location in our study. The machine's speed is estimated from the frequency analysis of an actual F1 sound.