• Title/Summary/Keyword: doping state

Search Result 249, Processing Time 0.022 seconds

Effect of Ce Addition on Catalytic Activity of Cu/Mn Catalysts for Water Gas Shift Reaction (수성가스전이반응(Water Gas Shift Reaction)을 위한 Ce 첨가에 따른 Cu/Mn 촉매의 활성 연구)

  • PARK, JI HYE;IM, HYO BEEN;HWANG, RA HYUN;BAEK, JEONG HUN;KOO, KEE YOUNG;YI, KWANG BOK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.28 no.1
    • /
    • pp.1-8
    • /
    • 2017
  • Cu/Mn/Ce catalysts for water gas shift (WGS) reaction were synthesized by urea-nitrate combustion method with the fixed molar ratio of Cu/Mn as 1:4 and 1:1 with the doping concentration of Ce from 0.3 to 0.8 mol%. The prepared catalysts were characterized with SEM, BET, XRD, XPS, $H_2$-TPR, $CO_2$ TPD, $N_2O$ chemisorption analysis. The catalytic activity tests were carried out at a GHSV of $28,000h^{-1}$ and a temperature range of 200 to $400^{\circ}C$. The Cu/Mn(CM) catalysts formed Cu-Mn mixed oxide of spinel structure ($Cu_{1.5}Mn_{1.5}O_4$) and manganese oxides ($MnO_x$). However, when a small amount of Ce was doped, the growth of $Cu_{1.5}Mn_{1.5}O_4$ was inhibited and the degree of Cu dispersion were increased. Also, the doping of Ce on the CM catalyst reduced the reduction temperature and the base site to induce the active site of the catalyst to be exposed on the catalyst surface. From the XPS analysis, it was confirmed that maintaining the oxidation state of Cu appropriately was a main factor in the WGS reaction. Consequently, Ce as support and dopant in the water gas shift reaction catalysts exhibited the enhanced catalytic activities on CM catalysts. We found that proper amount of Ce by preparing catalysts with different Cu/Mn ratios.

Structural analysis and thermal expansion property of Cu doped LSM for SOFCs (Cu가 도핑된 LSM의 구조분석과 열팽창특성 연구)

  • Noh, Tai-Min;Ryu, Ji-Seung;Kim, Jin-Seong;Jeong, Cheol-Weon;Lee, Hee-Soo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.21 no.4
    • /
    • pp.175-180
    • /
    • 2011
  • The doping effect of Cu in the Sr-doped lanthan manganites (LSM) has been investigated in terms of structural analysis and thermal expansion coefficient (TEC). The $La_{0.8}Sr_{0.2}Mn_{1-x}Cu_xO_3$ ($0{\leq}x{\leq}0.3$) were prepared by solid state reaction method and their crystal structure and TEC were measured. A decrease in the lattice parameters and the TEC were observed with increase eu content, whereas they were decreased for x = 0.3. For $0{\leq}x{\leq}0.2$, the decrease of the lattice parameter and the TEC with increase Cu content were attributed to the reduction of ionic radius of Cu ions due to the presence of $Cu^{3+}$ ions. For x = 0.3, however, the increase was originated from the formation of oxygen vacancies due 10 the presence of $Cu^{2+}$ and $Mn^{4+}$.

Optical Properties of MgMoO4:Dy3+,Eu3+ Phosphors Prepared with Different Eu3+ Molar Ratios (Eu3+ 이온의 몰 비 변화에 따른 MgMoO4:Dy3+,Eu3+ 형광체의 광학 특성)

  • Kim, Jung Dae;Cho, Shinho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.3
    • /
    • pp.186-191
    • /
    • 2016
  • The effects of $Eu^{3+}$ doping on the structural, morphological, and optical properties of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors prepared by solid-state reaction technique were investigated. XRD patterns exhibited that all the synthesized phosphors showed a monoclinic system with a dominant (220) diffraction peak, irrespective of the content of $Eu^{3+}$ ions. The surface morphology of $MgMoO_4:Dy^{3+},Eu^{3+}$ phosphors was studied using scanning electron microscopy and the grains showed a tendency to agglomerate as the content of $Eu^{3+}$ ions increased. The excitation spectra of the phosphor powders were composed of a strong charge transfer band centered at 294 nm in the range of 230~340 nm and two intense peaks at 354 and 389 nm, respectively, arising from the $^6H_{15/2}{\rightarrow}^6P_{7/2}$ and $^6H_{15/2}{\rightarrow}^4M_{21/2}$ transitions of $Dy^{3+}$ ions. The emission spectra of the $Mg_{0.85}MoO_4$:10 mol% $Dy^{3+}$ phosphors without incorporating $Eu^{3+}$ ions revealed a strong yellow band centered at 573 nm resulting from the $^4F_{9/2}{\rightarrow}^6H_{13/2}$ transition of $Dy^{3+}$. As the content of $Eu^{3+}$ was increased, the intensity of the yellow emission was gradually decreased, while that of red emission band located at 614 nm began to appear, approached a maximum value at 10 mol%, and then decreased at 15 mol% of $Eu^{3+}$. These results indicated that white light emission could be achieved by controlling the contents of the $Dy^{3+}$ and $Eu^{3+}$ ions incorporated into the $MgMoO_4$ host crystal.

Brief Review on the preparation of N-doped TiO2 and Its Application to Photocatalysis (질소 도핑 티타니아의 제조와 광촉매 활용의 연구동향)

  • Oh, Kyeongseok;Hwang, Duck Kun
    • Korean Chemical Engineering Research
    • /
    • v.57 no.3
    • /
    • pp.331-337
    • /
    • 2019
  • Titania has become the most applicable material for photocatalytic application. Nevertheless, titania has the weak point in its wide band gap energy that is mainly activated by UV irradiation. There have been vast research challenges in order to make the wide band gap energy of titania narrow that could be activated in the presence of visible light. Various modifications of titania surface were popular because titania needs to change its surface to respond in visible light. Among the methodological approaches, N-doping to titania can be the alternative candidate because it is facile process and eco-friendly. The activated electron from valence band in N-doped $TiO_2$ migrates to conduction band in the presence of visible light irradiation, which shows photocatalytic activity as well. In this study, focused on the evaluation of nitrogen state after N-doping through brief review. Arguments are still existed in nitrogen states and their different effects on photocatalytic activity. In particular, two nitrogen states are generally reported; substitutional and interstitial states. The research articles regarding N-doped $TiO_2$ are continuously appearing because the potential application of water split in visible light is still fascinate. The future of N-doped $TiO_2$ is also presented by referrals based on various literature.

Synthesis and Electrochemical Properties of Zn and Al added LiNi0.85Co0.15O2 Cathode Materials (Zn와 Al을 첨가한 LiNi0.85Co0.15O2 양극활물질의 제조 및 전기화학적 특성평가)

  • Kim, Su-Jin;Seo, Jin-Seong;Na, Byung-Ki
    • Korean Chemical Engineering Research
    • /
    • v.59 no.1
    • /
    • pp.42-48
    • /
    • 2021
  • Zn and Al added LiNi0.85Co0.15O2 cathode materials were synthesized to improve electrochemical properties and thermal stability using a solid-state route. Crystal structure, particle size and surface shape of the synthesized cathode materials was measured using XRD (X-ray diffraction) and SEM (scanning electron microscopy). CV (cyclic voltammetry), first charge-discharge profiles, rate capability, and cycle life were measured using battery cycler (Maccor, series 4000). Strong binding energy of Al-O bond enhanced structure stability of cathode material. Electrochemical properties were improved by preventing cation mixing between Li+ and Ni2+. Large ion radius of Zn+ increased lattice parameter of NC cathode material, which meant unit-cell volume was expanded. NCZA25 showed 80% of capacity retention at 0.5 C-rate during 100 cycles, which was 12% higher than that of NC cathode. The discharge capacity of NCZA25 showed 104 mAh/g at 5 C-rate. NCZA25 achieved 36 mAh/g more capacity than that of NC cathod. NCZA25 cathode material showed excellent rate capability and cycling performance.

Upconversion luminescence from poly-crystalline Yb3+, Er3+ co-doped NaGd(MoO4)2 by simple solid state method (Er3+, Yb3+ 이온이 동시 도핑된 NaGd(MoO4)2의 업컨버젼 분석)

  • Kang, Suk Hyun;Kang, Hyo Sang;Lee, Hee Ae;Shim, Kwang Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.26 no.4
    • /
    • pp.159-163
    • /
    • 2016
  • Up-conversion (UC) luminescence properties of polycrystalline $Er^{3+}/Yb^{3+}$ doped $NaGd(MoO_4)_2$ phosphors synthesized by a simple solid-state reaction method were investigated in detail. Used to 980 nm excitation (InfraRed area), $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ exhibited very weak red emissions near 650 and 670 nm, and very strong green UC emissions at 540 and 550 nm corresponding to the infra 4f transitions of $Er^{3+}(^4F_{9/2},\;^2H_{11/2},\;^4S_{3/2}){\rightarrow}Er^{3+}(^4I_{15/2})$. The optimum doping concentration of $Er^{3+}$, $Yb^{3+}$ for highest emission intensity was determined by XRD and PL analysis. The $Er^{3+}/Yb^{3+}$ (10.0/10.0 mol%) co-doped $NaGd(MoO_4)_2$ phosphor sample exhibited very strong shiny green emission. A possible UC mechanism for $Er^{3+}/Yb^{3+}$ co-doped $NaGd(MoO_4)_2$ depending on the pump power dependence was discussed.

Microstructure Evolution and Dielectric Characteristics of CaCu3Ti4O12 Ceramics with Sn-Substitution

  • Kim, Cheong-Han;Oh, Kyung-Sik;Paek, Yeong-Kyeun
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.1
    • /
    • pp.87-91
    • /
    • 2013
  • The doping effect of Sn on the microstructure evolution and dielectric properties was studied in $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals. Samples were produced by a conventional solid-state reaction method. Sintering was carried out at $1115^{\circ}C$ for 2-16 h in air. The dielectric constant and loss were examined at room temperature over a frequency range between $10^2$ and $10^6$ Hz. The microstructure was found to evolve into three stages. Addition of $SnO_2$ led to an increase in density and advanced formation of abnormal grains. The formation of coarse grains with a reduced thickness of the boundary brought about an enhanced dielectric constant and a lower dielectric loss below ~1 kHz. EDS data showed the Cu-rich phase along the grain boundary, which should contribute to the improved dielectric constant according to the internal barrier layer capacitor model. After all, $SnO_2$ was an effective dopant to elevate the dielectric characteristics of $CaCu_3Ti_{4-x}Sn_xO_{12}$ polycrystals as a promoter for abnormal grain growth.

Influence of Electrochemical Polymerization Temperature on the Morphology of Binary-doped Chiral Polyaniline (전기화학적 중합온도가 Binary 도핑된 키랄 Polyaniline 모폴로지에 미치는 영향)

  • Kim, Eunok;Kim, Young-Hwan
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.5
    • /
    • pp.456-462
    • /
    • 2014
  • Binary-doped conducting chiral polyaniline (PAni) was synthesized by electrochemical polymerization of aniline at low-temperature ($0^{\circ}C$) and room-temperature (RT) conditions. (+)-Camphorsulfonic acid (CSA) and hydrochloric acid (HCl) were used as a binary dopant. Formation of the binary-doped PAni rather than a mixture of the corresponding single-doped PAni was confirmed by cyclic voltammogram, FT-IR and circular dichroism spectra. The temperature influenced the electrochemical behavior and doping level, thus determining the crystallinity and morphology of the PAni. However, among other results, morphology of the PAni is found to be most strongly depends on the polymerization temperature. With increased temperature from the initial state to RT, morphology of the PAni changed from fibrous to short-fibrous structure. The sheet resistance of the PAni films on an ITO was measured by using four-point probe dc method.

Pycnometric and Spectroscopic Studies of Red Phosphors Ca2+(1-1.5x)WO4:Eu3+x and Ca2+(1-2x)WO4:Eu3+x,Na+x

  • Cho, Seon-Woog
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.9
    • /
    • pp.2769-2773
    • /
    • 2013
  • Red phosphors $Ca_{(1-1.5x)}Eu_xWO_4$ and $Ca_{(1-2x)}Eu^_xNa_xWO_4$ were synthesized with various concentrations x of $Eu^{3+}$ ions by using a solid-state reaction method. The crystal structure of the red phosphors were found to be a tetragonal scheelite structure with space group $I4_1/a$. X-ray diffraction (XRD) results show the (112) main diffraction peak centered at $2{\theta}=28.71^{\circ}$, and indicate that there is no basic structural deformation caused by the vacancies ${V_{Ca}}^{{\prime}{\prime}}$ or the $Eu^{3+}$ (and $Na^+$) ions in the host crystals. Densities of $Ca_{(1-1.5x)}Eu_xWO_4$ were measured on a (helium) gas pycnometer. Comparative results between the experimental and theoretical densities reveal that $Eu^{3+}$ (and $Na^+$) ions replace the $Ca^{2+}$ ions in the host $CaWO_4$. Also, the photoluminescence (PL) emission and photoluminescence excitation (PLE) spectra show the optical properties of trivalent $Eu^{3+}$ ions, not of divalent $Eu^{2+}$. Raman spectra exhibit that, without showing any difference before and after the doping of activators to the host material $CaWO_4$, all the gerade normal modes occur at the identical frequencies with the same shapes and weaker intensities after the substitution. However, the FT-IR spectra show that some of the ungerade normal modes have shifted positions and different shapes, caused by different masses of $Eu^{3+}$ ions (or $Na^+$ ions, or ${V_{Ca}}^{{\prime}{\prime}}$ vacancies) from $Ca^{2+}$.

Synthesis and characterization of carbon doped TiO2 photocatalysts supported on stainless steel mesh by sol-gel method

  • Tijani, JO.;Fatoba, OO.;Totito, TC.;Roos, WD.;Petrik, LF.
    • Carbon letters
    • /
    • v.22
    • /
    • pp.48-59
    • /
    • 2017
  • This study synthesized pure anatase carbon doped $TiO_2$ photocatalysts supported on a stainless steel mesh using a sol-gel solution of 8% polyacrylonitrile (PAN)/dimethylformamide (DMF)/$TiCl_4$. The influence of the pyrolysis temperature and holding time on the morphological characteristics, particle sizes and surface area of the prepared catalyst was investigated. The prepared catalysts were characterized by several analytical methods: high resolution scanning electron microscopy (HRSEM), energy dispersive spectroscopy (EDS), X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET), and X-ray photoelectron spectroscopy (XPS). The XRD patterns showed that the supported $TiO_2$ nanocrystals are typically anatase, polycrystalline and body-centered tetragonal in structure. The EDS and XPS results complemented one another and confirmed the presence of carbon species in or on the $TiO_2$ layer, and the XPS data suggested the substitution of titanium in $TiO_2$ by carbon. Instead of using calcination, PAN pyrolysis was used to control the carbon content, and the mesoporosity was tailored by the applied temperature. The supported $TiO_2$ nanocrystals prepared by pyrolysis at 300, 350, and $400^{\circ}C$ for 3 h on a stainless steel mesh were actual supported carbon doped $TiO_2$ nanocrystals. Thus, $PAN/DMF/TiCl_4$ offers a facile, robust sol-gel related route for preparing supported carbon doped $TiO_2$ nanocomposites.