• Title/Summary/Keyword: doping distribution

Search Result 151, Processing Time 0.019 seconds

Analysis of Subthreshold Swing for Doping Distribution Function of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 MOSFET의 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.5
    • /
    • pp.1143-1148
    • /
    • 2014
  • This paper has analyzed the change of subthreshold swing for doping distribution function of asymmetric double gate(DG) MOSFET. The basic factors to determine the characteristics of DGMOSFET are dimensions of channel, i.e. channel length and channel thickness, and doping distribution function. The doping distributions are determined by ion implantation used for channel doping, and follow Gaussian distribution function. Gaussian function has been used as carrier distribution in solving the Poisson's equation. Since the Gaussian function is exactly not symmetric for top and bottome gates, the subthreshold swings are greatly changed for channel length and thickness, and the voltages of top and bottom gates for asymmetric double gate MOSFET. The deviation of subthreshold swings has been investigated for parameters of Gaussian distribution function such as projected range and standard projected deviation in this paper. As a result, we know the subthreshold swing is greatly changed for doping profiles and bias voltage.

Threshold Voltage Shift for Doping Profile of Asymmetric Double Gate MOSFET (도핑분포함수에 따른 비대칭 이중게이트 MOSFET의 문턱전압이동현상)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.4
    • /
    • pp.903-908
    • /
    • 2015
  • This paper has analyzed threshold voltage shift for doping profile of asymmetric double gate(DG) MOSFET. Ion implantation is usually used in process of doping for semiconductor device and doping profile becomes Gaussian distribution. Gaussian distribution function is changed for projected range and standard projected deviation, and influenced on transport characteristics. Therefore, doping profile in channel of asymmetric DGMOSFET is affected in threshold voltage. Threshold voltage is minimum gate voltage to operate transistor, and defined as top gate voltage when drain current is $0.1{\mu}A$ per unit width. The analytical potential distribution of series form is derived from Poisson's equation to obtain threshold voltage. As a result, threshold voltage is greatly changed by doping profile in high doping range, and the shift of threshold voltage due to projected range and standard projected deviation significantly appears for bottom gate voltage in the region of high doping concentration.

The Analysis of Breakdown Voltage for the Double-gate MOSFET Using the Gaussian Doping Distribution

  • Jung, Hak-Kee
    • Journal of information and communication convergence engineering
    • /
    • v.10 no.2
    • /
    • pp.200-204
    • /
    • 2012
  • This study has presented the analysis of breakdown voltage for a double-gate metal-oxide semiconductor field-effect transistor (MOSFET) based on the doping distribution of the Gaussian function. The double-gate MOSFET is a next generation transistor that shrinks the short channel effects of the nano-scaled CMOSFET. The degradation of breakdown voltage is a highly important short channel effect with threshold voltage roll-off and an increase in subthreshold swings. The analytical potential distribution derived from Poisson's equation and the Fulop's avalanche breakdown condition have been used to calculate the breakdown voltage of a double-gate MOSFET for the shape of the Gaussian doping distribution. This analytical potential model is in good agreement with the numerical model. Using this model, the breakdown voltage has been analyzed for channel length and doping concentration with parameters such as projected range and standard projected deviation of Gaussian function. As a result, since the breakdown voltage is greatly changed for the shape of the Gaussian function, the channel doping distribution of a double-gate MOSFET has to be carefully designed.

Dependence of Subthreshold Current for Channel Structure and Doping Distribution of Double Gate MOSFET (DGMOSFET의 채널구조 및 도핑분포에 따른 문턱전압이하 전류의존성)

  • Jung, Hak-Kee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.4
    • /
    • pp.793-798
    • /
    • 2012
  • In this paper, dependence of subthreshold current has been analyzed for doping distribution and channel structure of double gate(DG) MOSFET. The charge distribution of Gaussian function validated in previous researches has been used to obtain potential distribution in Poisson equation. Since DGMOSFETs have reduced short channel effects with improvement of current controllability by gate voltages, subthreshold characteristics have been enhanced. The control of current in subthreshold region is very important factor related with power consumption for ultra large scaled integration. The deviation of threshold voltage has been qualitatively analyzed using the changes of subthreshold current for gate voltages. Subthreshold current has been influenced by doping distribution and channel dimension. In this study, the influence of channel length and thickness on current has been analyzed according to intensity and distribution of doping.

Influences of Doping Methods on Microstructure and Fracture Toughness of Mo-La Alloys

  • Wang, Lin;Sun, Yuanjun;Luo, Jianhai;Zhu, Yongan;Niu, Pingwen
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09b
    • /
    • pp.1327-1328
    • /
    • 2006
  • Lanthanum oxide was introduced to molybdenum powder by liquid-liquid doping and liquid-solid doping respectively. Mo alloys were prepared by powder metallurgy technology. The size distribution and feature of dopant particles and the fractographs of Mo alloys were investigated by TEM and SEM respectively. The results indicated that liquid-liquid doping method is favorable for refining and dispersing $La_2O_3$ particles uniformly in matrix. Fracture toughness of Mo alloys prepared by liquid-liquid doping showed better results than that of liquid-solid doping. Furthermore, the influences of the size distribution of $La_2O_3$ on properties of Mo alloys was discussed by dislocation pile-up theory.

  • PDF

Analysis of Subthreshold Current Deviation for Channel Doping of Double Gate MOSFET (이중게이트 MOSFET의 채널도핑에 다른 문턱전압이하 전류 변화 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.17 no.6
    • /
    • pp.1409-1413
    • /
    • 2013
  • This paper analyzed the change of subthreshold current for channel doping concentration of double gate(DG) MOSFET. Poisson's equation had been used to analyze the potential distribution in channel, and Gaussian function had been used as carrier distribution. The potential distribution was obtained as the analytical function of channel dimension, using the boundary condition. The subthreshold current had been analyzed for channel doping concentration, and projected range and standard projected deviation of Gaussian function. Since this analytical potential model was verified in the previous papers, we used this model to analyze the subthreshold current. As a result, we know the subthreshold current was influenced on parameters of Gaussian function and channel doping concentration for DGMOSFET.

Electron Distribution in the GaAs-AlxGa1-x Quantum Well with the Si δ-doping Layer in a Non-central Position under the External Electric Field (비 중심 Si δ-doping 층을 갖는 GaAs-AlxGa1-x 양자우물에서 전계에 따른 전자 분포)

  • Choi, Jun-Young;Chun, Sang-Kook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.1
    • /
    • pp.14-18
    • /
    • 2007
  • The electric property in the $GaAs-Al_{x}Ga_{1-x}$ quantum well with the Si ${\delta}-doping$ layer in a non-central position is studied through the effect of the electric field intensity on the electron distribution. The finite difference method is used for the calculation of the subband energy level and its wavefunction. In order to account for the change of the potential energy due to the charged particles, the self consistent method is employed. As the Si ${\delta}-doping$ layer becomes closer to the heterojunction interface, the electrons less affected by Coulomb scattering are greatly increased under the external electric field. Therefore, the high speed device is suggested due to the fact that the high mobility electrons can be increased by positioning the ${\delta}-doping$ layer in the quantum well and by applying the electric field intensity.

Magnetic Properties and Cation Distribution of Phosphorous-Doped $Co-{\gamma}-{Fe_2} {O_3}$ Particles

  • Na, J.G.;Han, D.H.
    • Journal of Magnetics
    • /
    • v.1 no.1
    • /
    • pp.51-54
    • /
    • 1996
  • The effects of additional P-doping on the magnetic properties, thermal stability and cation distribution of Co-doped ${\gamma}-{Fe_2} {O_3}$have been investigated by means of magnetic annealing and measurements with vibration sample magnetometer and torque magnetometer. It is found that the P-doping promotes the coercivity and its magnetic-thermal stability, which may be attributed to increase of the cubic magneto-crystalline anisotropy constant, $K_1$ and the activation energy, E, for cation rearrangement, respectively. The cation distribution of P and Co-substituted iron oxide was calculated from the variation of the saturation magnetization with P-doping on the basis of the Neel model. It was found that the most of P ions in the iron oxides occupied the B-site of spinel lattice.

  • PDF

Analysis of Subthreshold Swing for Channel Doping of Asymmetric Double Gate MOSFET (비대칭 이중게이트 MOSFET의 채널도핑에 따른 문턱전압이하 스윙 분석)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.3
    • /
    • pp.651-656
    • /
    • 2014
  • This paper analyzed the change of subthreshold swing for channel doping of asymmetric double gate(DG) MOSFET. The subthreshold swing is the factor to describe the decreasing rate of off current in the subthreshold region, and plays a very important role in application of digital circuits. Poisson's equation was used to analyze the subthreshold swing for asymmetric DGMOSFET. Asymmetric DGMOSFET could be fabricated with the different top and bottom gate oxide thickness and bias voltage unlike symmetric DGMOSFET. It is investigated in this paper how the doping in channel, gate oxide thickness and gate bias voltages for asymmetric DGMOSFET influenced on subthreshold swing. Gaussian function had been used as doping distribution in solving the Poisson's equation, and the change of subthreshold swing was observed for projected range and standard projected deviation used as parameters of Gaussian distribution. Resultly, the subthreshold swing was greatly changed for doping concentration and profiles, and gate oxide thickness and bias voltage had a big impact on subthreshold swing.

Relation of Conduction Path and Subthreshold Swing for Doping Profile of Asymmetric Double Gate MOSFET (비대칭 DGMOSFET의 도핑분포함수에 따른 전도중심과 문턱전압이하 스윙의 관계)

  • Jung, Hakkee
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1925-1930
    • /
    • 2014
  • This paper has analyzed the relation of conduction path and subthreshold swing for doping profile in channel of asymmetric double gate(DG) MOSFET. Since the channel size of asymmetric DGMOSFET is greatly small and number of impurity is few, the high doping channel is analyzed. The analytical potential distribution is derived from Possion's equation, and Gaussian distribution function is used as doping profile. The conduction path and subthreshold swing are derived from this analytical potential distribution, and those are investigated for variables of doping profile, projected range and standard projected deviation, according to the change of channel length and thickness. As a result, subthreshold swing is reduced when conduction path is approaching to top gate, and that is increased with a decrease of channel length and a increase of channel thickness due to short channel effects.