• Title/Summary/Keyword: dopaminergic receptors

Search Result 60, Processing Time 0.029 seconds

Effects of Dopaminergic Drugs on the Mast Cell Degranulation and Nitric Oxide Generation in RAW 264.7 Cells

  • Seol, Il-Woong;Kuo, Na-Youn;Kim, Kyeong-Man
    • Archives of Pharmacal Research
    • /
    • v.27 no.1
    • /
    • pp.94-98
    • /
    • 2004
  • Effects of dopaminergic drugs on the degranulation of mast cells (RBL-2H3 cells) and the nitric oxide production from macrophage cells (RAW 264.7) were studied. Among the dopaminergic agonists and antagonists tested, bromocriptine, 7-OH-DPAT, haloperidol, and clozapine showed potent inhibitions of mast cell degranualtion ($IC_{50} value, 5 \mu$ M). However, these dopaminergic agents did not affect the tyrosine phosphorylations of the signaling components of the high affinity IgE receptor ($Fc\varepsilonRI$), such as Syk, $PLC\gamma1$, and $PLC\gamma2$.; This suggested that these signaling components were not involved in the inhibition of the mast cell degranulation by these compounds. On the other hand, dopamine, bromocriptine, 7-OH-DAPT, and haloperidol markedly inhibited the nitric oxide production from RAW 264.7 cells ($IC_{50}$ values, 10-20$\mu$M). Bromocriptine, a dopamine agonist that is routinely used for the treatment of Parkinsons disease, inhibited the expression of the inducible nitric oxide synthase at an early stage of the LPS-induced protein expression in a dose-dependent manner. The results suggested that these dopaminergic agents, when used for the treatment of dopamine receptors-related diseases, such as Schizophrenia or Parkinsons disease, might have additional beneficial effects.

Dopamine signaling in food addiction: role of dopamine D2 receptors

  • Baik, Ja-Hyun
    • BMB Reports
    • /
    • v.46 no.11
    • /
    • pp.519-526
    • /
    • 2013
  • Dopamine (DA) regulates emotional and motivational behavior through the mesolimbic dopaminergic pathway. Changes in DA signaling in mesolimbic neurotransmission are widely believed to modify reward-related behaviors and are therefore closely associated with drug addiction. Recent evidence now suggests that as with drug addiction, obesity with compulsive eating behaviors involves reward circuitry of the brain, particularly the circuitry involving dopaminergic neural substrates. Increasing amounts of data from human imaging studies, together with genetic analysis, have demonstrated that obese people and drug addicts tend to show altered expression of DA D2 receptors in specific brain areas, and that similar brain areas are activated by food-related and drug-related cues. This review focuses on the functions of the DA system, with specific focus on the physiological interpretation and the role of DA D2 receptor signaling in food addiction.

Effects of dopaminergic receptor stimulation on Mg2+ regulation in the rat heart and isolated ventricular myocytes (흰쥐의 심장과 심근세포에서 dopaminergic 수용체 자극이 Mg2+ 조절에 미치는 영향)

  • Kang, Hyung-sub;Kim, Jong-shick;Kim, Jin-shang
    • Korean Journal of Veterinary Research
    • /
    • v.39 no.3
    • /
    • pp.463-471
    • /
    • 1999
  • Magnesium($Mg^{2+}$) is one of the most abundant intracellular divalent cation. Although recent studies demonstrate that adrenergic receptor stimulation evokes marked changes in $Mg^{2+}$ homeostasis, the regulation of $Mg^{2+}$ by dopaminergic receptor stimulation is not yet known. In this work, we used dopaminergic agents to identify which type(s) of receptors were involved in the mobilization of $Mg^{2+}$ by dopaminergic receptor stimulation in the perfused rat hearts, isolated myocytes and circulating blood. The $Mg^{2+}$ content was measured by atomic absorbance spectrophotometry. Dopamine(DA), apomorphine(APO) and pergolide stimulated $Mg^{2+}$ efflux in the perfused rat hearts and these effects were inhibited by haloperidol or fluphenazine, nonselective dopaminergic antagonists. SKF38393, a selective doparminergic agonist, increased $Mg^{2+}$ efflux from the perfused hearts in dose dependant manners and SKF38393-induced $Mg^{2+}$ efflux was blocked by haloperidol. However, dopaminergic agonists-induced $Mg^{2+}$ efflux was potentiated in the presence of sulpiride or eticlopride, $D_2$-selective antagonist, from the perfused hearts. This increase of $Mg^{2+}$ efflux was blocked by haloperidol or imipramine. DA or pergolide increased in circulating $Mg^{2+}$ from blood. By contrast, PPHT stimulated $Mg^{2+}$ influx(a decrease in efflux) from the perfused hearts and circulating blood. PPHT-induced $Mg^{2+}$ influx was blocked by fluphenazine in the perfused hearts. DA-stimulated $Mg^{2+}$ efflux was inhibited by dopaminergic antagoinst in the isolated myocytes. In conclusion, the flux of $Mg^{2+}$ is modulated by DA receptor activation in the rat hearts. The efflux of $Mg^{2+}$ can be increased by $D_1$-receptor stimulation and decreased by $D_2$-receptor stimulation, respectively.

  • PDF

Inhibitory Mechanism of Bromocriptine on Catecholamine Release Evoked by Cholinergic Stimulation and Membrane Depolarization from the Rat Adrenal Medulla

  • Lim, Dong-Yoon;Lee, Yong-Gyoon;Kim, Il-Hwan
    • Archives of Pharmacal Research
    • /
    • v.25 no.4
    • /
    • pp.511-521
    • /
    • 2002
  • The purpose of this study was to determine whether bromocriptine affects the catecholamines (CA) secretion evoked in isolated perfused rat adrenal glands, by cholinergic stimulation, membrane depolarization and calcium mobilization, and to establish the mechanism of its action. The perfusion of bromocriptine ($1~10{\;}{\mu}M$) into an adrenal vein, for 60 min, produced relatively dose-dependent inhibition in the secretion of catecholamines (CA) evoked by acetylcholine (ACh, 5.32 mM), DMPP ($100{\;}{\mu}M$ for 2 min), McN-A-343 ($100{\;}{\mu}M$ for 2 min), cyclopiazonic acid (CPA, $10{\;}{\mu}M$ for 4 min) and Bay-K-8644 ($10{\;}{\mu}M$ for 4 min). High $K^+$ (56 mM)-evoked CA release was also inhibited, although not in a dose-dependent fashion. Also, in the presence of apomorphine ($100{\;}{\mu}M$), which is also known to be a selective $D_2$-agonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid were also significantly depressed. However, in adrenal glands preloaded with bromocriptine ($3{\;}{\mu}M$) in the presence of metoclopramide ($15{\;}{\mu}M$), a selective $D_2$-antagonist, the CA secretory responses evoked by ACh, high potassium, DMPP, McN-A-343, Bay-K-8644 and cyclopiazonic acid considerably recovered as compared to that of bromocriptine only. Taken together, these results suggest that bromocriptine can inhibit the CA secretion evoked by stimulation of cholinergic receptors, as well as by membrane depolarization, in the perfused rat adrenal medulla. It is thought this inhibitory effect of bromocriptine may be mediated by inhibiting the influx of extracellular calcium and the release from intracellular calcium stores, through the activation of dopaminergic $D_2$-receptors located in the rat adrenomedullary chromaffin cells. Furthermore, these findings also suggest that the dopaminergic $D_2$-receptors may play an important role in regulating adrenomedullary CA secretion.

The Effects of Self-administration of Methamphetamine on Serotonin Receptors Level in Rat Brain (메스암페타민 자발섭취가 흰쥐 뇌조직 중 세로토닌 수용체에 미치는 영향)

  • 박기숙;홍진태;한진이;김혜진;김용규;이종권;안광수;이선희
    • Biomolecules & Therapeutics
    • /
    • v.9 no.2
    • /
    • pp.88-95
    • /
    • 2001
  • (+)-Methamphetamine (METH) is a psychostimulant, which has been the most popular abused drug in Korea. The rewarding mechanism in METH abuse has been reported to be mediated by dopaminergic system. Recently, it has been reported that dopamine releaser (phentermine) plays a dominant role in the discriminative stimulus effects of METH, whereas 5-HT releaser (fenfluramine) can strongly modify METH self-administration. The present study is designed to assess the behavioral changes and the changes of the serotonin receptors in the brains of rats administered repeated of self-administered METH. The repeated administration of 1.0 mg/kg/day METH for 12 days increased locomotor activities, and there was no difference between i.v. and i.p. treatment. Rats had actively acquired METH self-administration for 3 weeks at 0.1 or 0.2 mg/kg/injection. Whereas, it was taken few days to acquire sucrose pellet self-administration. The binding of [$^3$H]-8-hydroxy-DPAT (5-H $T_{1A}$ receptors) and [$^3$H]-5-carboxytryptamine (5-H $T_{1B}$ receptors) to brain sections was examined. Both passive administration and self-administration of METH did not change significantly the serotonin receptors levels in hippocampus, striatum and nucleus accumbens. These results suggest that serotonin receptors may not change in the acquisition period of METH self-administration, and we are trying to investigate the serotonin receptors levels of brain in rats maintained of METH self-administration.n.n.

  • PDF

Behavioral Sensitization and M1 Muscarinic Acetylcholine Receptor mRNA Expression in Methamphetamine-Administered Mice

  • Kim, Kyung-In;Cho, Jae-Han;Park, Hyun-Jung;Lee, Seok-Yong;Jang, Choon-Gon
    • Biomolecules & Therapeutics
    • /
    • v.12 no.2
    • /
    • pp.101-107
    • /
    • 2004
  • Repeated administration of psychostimulants such as amphetamines increases locomotor activity in rodents. These drugs, including methamphetamine, enhance dopaminergic neurotransmission and result in hyper-locomotion and behavioral sensitization. It is well known that the existence of a complex balance between the cholinergic and dopaminergic systems in the central nervous system. Thus, behavioral sensitization by methamphetamine may be related to the expression of the M1 muscarinic acetylcholine receptors gene. The present study investigated the changes of M1R mRNA in hyperlocomotor activity and behavioral sensitization by methamphetamine (2 mg/kg) in mice. Our results showed that M1R mRNA expression was increased in the frontal cortex and the hippocampus region (the CA2 region) in the acute methamphetamine administered group compared to the saline administered group. In the chronic group, M1R mRNA expression was increased in the frontal cortex ill1d the hippocampus regions (CA2 and DG regions) in melt1amphetamine administered group compared to saline control group. These results indicate that acute or chronic treatment of mathamphetamine leads to the region-specific changes in mRNA expression levels of M1R. Therefore, Therefore, the present result suggests that M1R may play a role in modulating of methamphetamine-induced behavioral sensitization in mice.

Cocaine- and Amphetamine-Regulated Transcript (CART) Peptide Plays Critical Role in Psychostimulant-Induced Depression

  • Meng, Qing;Kim, Hyoung-Chun;Oh, Seikwan;Lee, Yong-Moon;Hu, Zhenzhen;Oh, Ki-Wan
    • Biomolecules & Therapeutics
    • /
    • v.26 no.5
    • /
    • pp.425-431
    • /
    • 2018
  • Cocaine- and amphetamine-regulated transcript (CART) peptide is a widely distributed neurotransmitter expressed in the central nervous systems. Previously, several reports demonstrated that nucleus accumbal-injected CART peptide positively modulated behavioral sensitization induced by psychostimulants and regulated the mesocorticolimbic dopaminergic pathway. It is confirmed that CART peptide exerted inhibitory effect on psychostimulant-enhanced dopamine receptors signaling, $Ca^{2+}$/calmodulin-dependent kinase signaling and crucial transcription factors expression. Besides modulation of dopamine receptors-related pathways, CART peptide also exhibited elaborated interactions with other neurotransmitter receptors, such as glutamate receptors and ${\gamma}$-aminobutyric acid receptors, which further account for attribution of CART peptide to inhibition of psychostimulant-potentiated locomotor activity. Recently, CART peptide has been shown to have anxiolytic functions on the aversive mood and uncontrolled drug-seeking behaviors following drug withdrawal. Moreover, microinjection of CART peptide has been shown to have an antidepressant effect, which suggests its potential utility in the mood regulation and avoidance of depression-like behaviors. In this review, we discuss CART pathways in neural circuits and their interactions with neurotransmitters associated with psychostimulant-induced depression.

Influence of Bromocriptine on Release of Norepinephrine and Epinephrine Evoked by Cholinergic Stimulation from the Rat Adrenal Medulla

  • Lee, Seung-Il;Kang, Moo-Jin;Lim, Dong-Yoon
    • Biomolecules & Therapeutics
    • /
    • v.9 no.3
    • /
    • pp.201-208
    • /
    • 2001
  • The present study was conducted to examine the effects of cholinergic stimulation and membrane depolarization on secretion of epinephrine (EP) and norepinephrine (NE) in the perfused model of the rat adrenal gland and to investigate the effect of bromocriptine on secretion of EP and NE evoked by these secreta-gogues. Acetylcholine (ACh, 5.32 mM), high $K^{+}$(56mM), 1.1-dimethyl-4-phenyl piperazinium iodide (DMPP, 100 $\mu$M for 2 min), (3-(m-cholro-phenyl-carbamoyl-oxy)-2butynyl trimethyl ammonium chloride (McN-A-343, 100 $\mu$M for 2 min), cyclopiazonic acid (10 $\mu$M for 4 min) and methyl-1,4-dihydro-2,6-dimethyl-3-nitro-4-(2-trifluoromethylphenyl) -pyridine-5-carboxylate (Bay-K-8644, 10 $\mu$M for 4 min) evoked a 1.3~5.3-fold greater secretion of EP than NE in the perfused rat adrenal gland. The perfusion of bromocriptine (1-10 $\mu$M) into an adrenal vein for 20 min produced relatively dose-dependent inhibition in secretion of EP and NE evoked by ACh, high $K^{+}$, DMPP, and McN-A-343. Moreover, under the presence of bromocriptine (1~10 $\mu$M), releasing responses of EP and NE evoked by cyclopiazonic acid and Bay-K-8644 were also greatly reduced. Taken together, these results suggest that cholinergic stimulation and membrane depolarization enhance more release of EP than NE in the perfumed rat adrenal medulla, and that bromocriptine inhibits the release of EP and NE evoked by stimulation of cholinergic receptors as well as by membrane depolarization. It seems that this inhibitory effect of bromocriptine is associated with inhibition of calcium channels through activation of dopaminergic D2-receptors located in the rat adrenomedullary chromaffin cells.lls.

  • PDF

Effects of Ginseng preparation on the central dopaminergic nervous systems in AF64A- induced amnestic rats.

  • Lim, Dong-Koo;S. M. Wee;Kim, K. M.;K. W. Oh;K. S. Yoo
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 1995.04a
    • /
    • pp.101-101
    • /
    • 1995
  • The effects of ginseng prepation, Adaptagen$\^$R/ (AD), on the central dopaminergic nervous system in the learning-impaired rats were studied. The learning impaired rats were rendered by the intracerebroventricular infusion of ethylcholine aziridium (AF64A), 3 nmol/each side. Three days after the infusion of AF64A, AD were orally intubated daily for five days, 200 mg/kg. The control groups were intubated with distilled water. Twenty four hours after the last intubation, The changes in the specific bindings of dopamine receptors, the concentrations of dopamine (DA) and metabolites, The activities of tyrosine hydrosylase (TH) and monoamine oxidase (MAO) were analyzed using receptor radiography, HPLC-ECD and the methods in enzyme-assays, respectively.

  • PDF

Influence of Intracerebroventricular Haloperidol on the Renal Function of the Rabbit (가토신장기능에 미치는 측뇌실내 Haloperidol의 영향)

  • Kim, Joong-Ky;Choi, Bong-Kyu;Kook, Young-Johng
    • The Korean Journal of Pharmacology
    • /
    • v.18 no.2
    • /
    • pp.103-117
    • /
    • 1982
  • In an effort to provide evidence as to the regulatory role of the central dopaminergic system on the renal function, the effects of centrally administered dopamine and its specific antagonist haloperidol were investigated. Haloperidol (HA) given intracerebroventricularly (i.c.v.) induced antidiuresis in doses of 15 and $50{\mu}g/kg$. With $15{\mu}g/kg$ sodium reabsorption in the tubules was increased, while with $50{\mu}g/kg$ free-water reabsorption was increased. However, a marked diuresis with increased sodium and potassium was observed with $150{\mu}g/kg$. Hemodynamic changes were not evident, indicating that the diuresis is of tubular origin. Dopamine (DA), on the other hand, produced antidiuresis when given i.c.v. in a dose-related fashion. With smaller doses of 5 and $15{\mu}g/kg$ the antidiuresis was related to increased reabsorption of sodium in the tubules, but higher doses of 50 and $150{\mu}g/kg$ the decreases in renal blood flow and glomerular filtration rate were evident in addition to the tubular action. After pretreatment with $150{\mu}g/kg$ HA, the effects of $15{\mu}g/kg$ DA was abolished, but the antidiuretic actions of 50 and $150{\mu}g/kg$ were not blocked, and the natriuretic diuretic action of HA was overcome and became inconspicuous. These observations indicate that the central dopaminergic system influences the renal function by producing antidiuresis, and HA elicits diuresis and natriuresis by competitively antagonizing DA specifically on the central dopaminegic receptors. The antidiuresis observed with smaller doses of HA can be best explained by the facts that there are more than two types of DA-receptors in the brain and that the presynaptic autoreceptors on the dopaminergic neurones which affect the dopamine release at the synapse are more sensitive than the postsynaptic receptors. Overall, these data provide an evidence indicating that the central dopaminergic system plays a role in the regulation of renal function in the rabbit.

  • PDF