• Title/Summary/Keyword: dopamine agonists

Search Result 34, Processing Time 0.06 seconds

Molecular Modeling of the Subtype Dopamine Receptor-ligand Interactions

  • Baek, Minkyung;Shin, Woong-Hee
    • Proceeding of EDISON Challenge
    • /
    • 2013.04a
    • /
    • pp.13-24
    • /
    • 2013
  • Dopamine agonists and antagonists and its receptor play a critical role in the information transfer in the nervous system, and dopamine receptor-ligands interactions are deeply related to Parkinson's disease, schizophrenia and some other mental diseases. However, the only experimental 3D structure available for dopamine receptors is human D3 dopamine receptor. Therefore, it is important to create model of subtype dopamine receptor-ligands interactions. We report here the 3D structures of the human D1 and D2 dopamine receptor predicted by using GalaxyTBM, and its predicted binding site determined by using GalaxyDock. The highly conserved Asp on TM 3 and Phe on TM 6 have critical role in ligand binding. Also, highly conserved serines on TM 5 are essential for binding agonists and some kinds of antagonists. We identify differences between binding sites of agonists and antagonists of human D1 and D2 dopamine receptor, and find the reasons of selective binding of antagonists.

  • PDF

Effects of Dopamine Agonists on Primary Cultured Neurons from Various Brain Regions

  • Kim, Kyeong-Man
    • Biomolecules & Therapeutics
    • /
    • v.2 no.1
    • /
    • pp.16-22
    • /
    • 1994
  • Using 2 to 4 day-old postnatal rats, primary brain cell cultures were made from various brain regions (substantia nigra, hippocampus, striatum, and nucleus accumbens). Whole-cell patch clamp technique was used for electrophysiological studies. Neurons cultured from substantia nigra were characterized more in detail to test whether these cultured neurons were appropriate for physiological studies. Immunocytochemical and electrophysiological properties of these cultured neurons agreed with those from other in vivo or in vitro studies suggesting that cultured neurons maintained normal cytological and physiological conditions. Modulation of ionic channels through dopamine receptors were studied from brain areas where dopamine plays important roles on brain functions. When neurons were clamped near resting membrane potential (-74mV), R(+), R(+)-SKF 38393, a specific D$_1$receptor agonist, activated cultured striatal neurons, and dopamine itself produced biphasic responses. Responses of cultured hippocampal neurons to dopamine agonists were kinds of mirror images to those from striatal neurons; D$_1$receptor agonists inhibited hippocampal neurons but quinpirole, a D$_2$receptor agonist, activated them. Neurons cultured from nucleus accumbens were inhibited by dopamine.

  • PDF

Updates on the Treatment of Restless Legs Syndrome (하지불안증후군 치료의 최신지견)

  • Kang, Seung-Gul
    • Sleep Medicine and Psychophysiology
    • /
    • v.25 no.1
    • /
    • pp.5-8
    • /
    • 2018
  • Restless legs syndrome (RLS) is a sleep disorder characterized by an urge to move the legs or arms and uncomfortable paresthesia in the legs. Treatment of RLS can be various depending on the causes, severity, and frequency of the symptoms. In the case of secondary RLS, it is important to identify and manage the cause of RLS. Dopamine agonists have been used as firstline treatments for primary RLS treatment. However, due to augmentation, which is a common side effect of dopamine agonists, recent treatment guidelines are changing to prefer to anticonvulsants such as pregabalin and gabapentin. Iron, opioid, or benzodiazepine may be used when anticonvulsants or dopamine agonists are not adequately treated. Because RLS is a chronic disease, it is essential to establish a long-term treatment plan considering both efficacy and side effects.

Dopamine $\beta$-Hydroxylase Inhibitory Activity of Chinese Herbal Drugs

  • Sun, Ji-Yeon;Lee, Jee-Hwan;Ki, Chan-Young;Han, Yong-Nam
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.272.2-272.2
    • /
    • 2003
  • Dopamine ${\beta}$-hydroxylase (DBH) synthesizes norepinephrine from dopamine under the presence of ascorbate as a coenzyme. Dopamine is transported into the vesicles of the varicosity, where the synthesis and the storage of norepinephrine take place. Some drugs such as DBH inhibitors, dopaminergic agonists,etc. are known to assist in treating Parkinson's disease. (omitted)

  • PDF

Involvement of D2 Receptor on Dopamine-induced Action in Interstitial Cells of Cajal from Mouse Colonic Intestine

  • Zuoa, Dong Chuan;Shahia, Pawan Kumar;Choia, Seok;Jun, Jae-Yeoul;Park, Jong-Seong
    • Biomedical Science Letters
    • /
    • v.18 no.3
    • /
    • pp.218-226
    • /
    • 2012
  • Dopamine is an enteric neurotransmitter that regulates gastrointestinal motility. This study was done to investigate whether dopamine modulates spontaneous pacemaker activity in cultured interstitial cells of Cajal (ICCs) from mouse using whole cell patch clamp technique, RT-PCR and live $Ca^{2+}$ imaging analysis. ICCs generate pacemaker inward currents at a holding potential of -70 mV and generate pacemaker potentials in current-clamp mode. Dopamine did not change the frequency and amplitude of pacemaker activity in small intestinal ICCs. On the contrary dopamine reduced the frequency and amplitude of pacemaker activity in large intestinal ICCs. RT-PCR analysis revealed that Dopamine2 and 4-receptors are expressed in c-Kit positive ICCs. Dopamine2 and 4 receptor agonists inhibited pacemaker activity in large intestinal ICCs mimicked those of dopamine. Domperidone, dopamine2 receptor antagonist, increased the frequency of pacemaker activity of large intestinal ICCs. In $Ca^{2+}$-imaging, dopamine inhibited spontaneous intracellular $Ca^{2+}$ oscillations of ICCs. These results suggest that dopamine can regulate gastrointestinal motility through modulating pacemaker activity of large intestinal ICCs and dopamine effects on ICCs are mediated by dopamine2 receptor and intracellular $Ca^{2+}$ modulation.

Lesion of Subthalamic Nucleus in Parkinsonian Rats : Effects of Dopamine $D_1$ and $D_2$ Receptor Agonists on the Neuronal Activities of the Substantia Nigra Pars Reticulata

  • Park, Yong-Sook;Jeon, Mi-Fa;Lee, Bae-Hwan;Chang, Jin-Woo
    • Journal of Korean Neurosurgical Society
    • /
    • v.42 no.6
    • /
    • pp.455-461
    • /
    • 2007
  • Objective : It was hypothesized that dopamine agonist administration and subthalamic nucleus (STN) lesion in the rat might have a synergistic effect on the neuronal activities of substantia nigra pars reticulata (SNpr) as observed in patients with Parkinson's disease. The effects of SKF38393 (a $D_1$ receptor agonist) and Quinpirole (a $D_2$ receptor agonist) were compared in parkinsonian rat models with 6- hydroxydopamine (6-OHDA) after STN lesion. Methods : SKF38393 and Quinpirole were consecutively injected intrastriatally. SNpr was microrecorded to ascertain the activity of the basal ganglia output structure. The effect of SKF38393 or Quinpirole injection on the firing rate and firing patterns of SNpr was investigated in medial forebrain bundle (MFB) lesioned rats and in MFB+STN lesioned rats. Results : The administration of SKF38393 decreased SNpr neuronal firing rates and the percentage of burst neurons in the MFB lesioned rats, but did not alter them in MFB+STN lesioned rats. The administration of Quinpirole significantly decreased the spontaneous firing rate in the MFB lesioned rats. However, after an additional STN lesion, it increased the percentage of burst neurons. Conclusion : This study demonstrated that dopamine agonists and STN lesion decreased the hyperactive firing rate and the percentage of burst neurons of SNpr neurons in 6-OHDA lesioned rats, respectively. Quinpirole with STN lesion increased a percentage of burst neurons. To clear the exact interactive mechanism of $D_1$ and $D_2$ agonist and the corresponding location, it should be followed a study using a nonselective dopamine agonist and $D_1$, $D_2$ selective antagonist.

A Case of Bromocriptine Resistant Hyperprolactinemia Which was Responsive to Pergolide (Pergolide에 반응한 Bromocriptine 저항성 고프로락틴혈증 1례)

  • Nam, Y.S.;Han, S.Y.;Choi, D.H.;Yoon, T.K.;Cha, K.Y.
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.26 no.2
    • /
    • pp.287-291
    • /
    • 1999
  • Dopamine agonists are commonly used in the medical treatment of prolactinomas. Bromocriptine has been the most widely used ergot derivative for two decades. Its oral administration, at a daily dose of $2.5{\sim}7.5mg$, restored normal gonadal function and normoprolactinemia in about 80% of patients. Nevertheless, a subset of patients could not achieve normal prolactin levels or resume normal gonadal function despite $15{\sim}30mg$/day bromocriptine for at least 6 months. Subsequently, these prolactinomas were consedered to be resistant to bromocriptine. The percentage of bromocriptine - resistant prolactinoma patients reported in the literature varies between 5 and 17% according to the series. Patients with bromocriptine resistance or bromocriptine intolerance have, however, been treated with other dopamine agonists, such as lysuride, pergolide, cabergoline, or quinagolide. Until cabergoline recently gained a product licence in the UK, there was no alternative dopamine agonist with a licence for this purpose. Quinagolide (CV $205{\sim}502$, Norprolac, Sandoz) is a nonergot dopamine agonist with improved selectivity for the D2 receptor, designed to retain the active pharmacophore of bromocriptine without the ergot moiety that might be responsible for side - effects. We have experienced a case of bromocriptine resistant hyperprolactinemia which was reponsive to pergolide. So we report this case with a brief review of literatures.

  • PDF

Clinical, Neuroimaging and Neurophysiologic Evidences of Restless Legs Syndrome as a Disorder of Central Nervous System (하지불안증후군이 중추신경계 질환임을 시사하는 임상적, 신경영상학적, 신경생리학적 증거들에 관하여)

  • Jung, Ki-Young
    • Annals of Clinical Neurophysiology
    • /
    • v.10 no.2
    • /
    • pp.98-100
    • /
    • 2008
  • Restless legs syndrome (RLS) is a sensorimotor neurological disorder in which the primary symptom is a compelling urge to move the legs, accompanied by unpleasant and disturbing sensations in the legs. Although pathophysiologic mechanism of RLS is still unclear, several evidences suggest that RLS is related to dysfunction in central nervous system involving brain and spinal cord. L-DOPA, as the precursor of dopamine, as well as dopamine agonists, plays an essential role in the treatment of RLS leading to the assumption of a key role of dopamine function in the pathophysiology of RLS. Patients with RLS have lower levels of dopamine in the substantia nigra and respond to iron administration. Iron, as a cofactor in dopamine production, plays a central role in the etiology of RLS. Functional neuroimaging studies using PET and SPECT support a central striatal D2 receptor abnormality in the pathophysiology of RLS. Functional MRI suggested a central generator of periodic limb movements during sleep (PLMs) in RLS. However, to date, we have no direct evidence of pathogenic mechanisms of RLS.

  • PDF