• Title/Summary/Keyword: donor plant

Search Result 108, Processing Time 0.031 seconds

Protective Effect of Nitric Oxide against Oxidative Stress under UV-B Radiation in Maize Leaves (UV-B 조사시 옥수수 잎의 산화적 스트레스에 대한 Nitric Oxide의 보호효과)

  • Kim, Tae-Yun;Jo, Myung-Hwan;Hong, Jung-Hee
    • Journal of Environmental Science International
    • /
    • v.19 no.12
    • /
    • pp.1323-1334
    • /
    • 2010
  • The effect of nitric oxide (NO) on antioxidant system and protective mechanism against oxidative stress under UV-B radiation was investigated in leaves of maize (Zea mays L.) seedlings during 3 days growth period. UV-B irradiation caused a decrease of leaf biomass including leaf length, width and weight during growth. Application of NO donor, sodium nitroprusside (SNP), significantly alleviated UV-B stress induced growth suppression. NO donor permitted the survival of more green leaf tissue preventing chlorophyll content reduction and of higher quantum yield for photosystem II than in non-treated controls under UV-B stress, suggesting that NO has protective effect on chloroplast membrane in maize leaves. Flavonoids and anthocyanin, UV-B absorbing compounds, were significantly accumulated in the maize leaves upon UV-B exposure. Moreover, the increase of these compounds was intensified in the NO treated seedlings. UV-B treatment resulted in lipid peroxidation and induced accumulation of hydrogen peroxide ($H_2O_2$) in maize leaves, while NO donor prevented UV-B induced increase in the contents of malondialdehyde (MDA) and $H_2O_2$. These results demonstrate that NO serves as antioxidant agent able to scavenge $H_2O_2$ to protect plant cells from oxidative damage. The activities of two antioxidant enzymes that scavenge reactive oxygen species, catalase (CAT) and ascorbate peroxidase (APX) in maize leaves in the presence of NO donor under UV-B stress were higher than those under UV-B stress alone. Application of 2-(4-carboxyphenyl)-4, 4, 5, 5-tetramethylimidazoline-1-oxyl-3- oxide (PTIO), a specific NO scavenger, to the maize leaves arrested NO donor mediated protective effect on leaf growth, photosynthetic pigment and free radical scavenging activity. However, PTIO had little effect on maize leaves under UV-B stress compared with that of UV-B stress alone. $N^{\omega}$-nitro-L-arginine (LNNA), an inhibitor of nitric oxide synthase (NOS), significantly increased $H_2O_2$ and MDA accumulation and decreased antioxidant enzyme activities in maize leaves under UV-B stress. This demonstrates that NOS inhibitor LNNA has opposite effects on oxidative resistance. From these results it is suggested that NO might act as a signal in activating active oxygen scavenging system that protects plants from oxidative stress induced by UV-B radiation and thus confer UV-B tolerance.

Selection and Agronomics Characterization of Radiation-Induced Variants in Rice (방사선 처리에 의해 유도된 돌연변이 벼의 주요 특징)

  • Lee, In-Sok;Kim, Dong-Sup;Choi, Su-Ryun;Song, Hi-Sup;Lee, Sang-Jae;Lim, Yong-Pyo;Lee, Young-Il
    • Journal of Plant Biotechnology
    • /
    • v.30 no.3
    • /
    • pp.227-232
    • /
    • 2003
  • Radiation technique has been used to develope mutant rice. Suwon 345 rice seeds were irradiated with 250 Gy gamma ray. Morphological characteristics of the variants in M$_{8}$ generation were observed and random amplified polymorphic DNA(RAPD) analysis was carried out. Plant height, panicle length, 1,000 grain weight and lodging were very different in mutants compared with donor cultivar. RAPD analysis showed that polymorphic bands were presented in several primers of the mutants. In comparison with original variety, variants were classified into four group through UPGMA analysis. A group has mutation trait in panicle length, B group in plant height and C group in 1,000 grain weight. Among mutants, no. 46 and 147 was ranked as salt tolerance and the malonaldehyde content of these mutants was more increased than that of original variety. Valuable mutants obtained will be useful for developing new cultivars and for studing gene function in molecular level.l.

Alleviating Effects of Nitric Oxide on Cadmium Toxicity in White Poplar (Populus alba)

  • Semsettin Kulac;Yakup Cikili;Halil Samet;Ertugrul Filiz
    • Journal of Forest and Environmental Science
    • /
    • v.40 no.1
    • /
    • pp.43-52
    • /
    • 2024
  • Cadmium (Cd) is non-essential heavy metal that negatively affects plant metabolism. Nitric oxide (NO) is an increasingly important molecule for plant metabolism that makes signaling. In this study, it was aimed to investigate the alleviating effect of sodium nitroprusside (SNP) application as NO donor in white poplar (Populus alba) under Cd stress conditions. SNP and without SNP treatments increased the Cd accumulation in root tissue. While photosynthetic pigments (Chl a, Chl b, Chl a+b, and carotenoid) content decreased by only Cd application, SNP+Cd application decreased the rate of photosynthetic pigments reduction. When the results of Cd and Cd+SNP applications were evaluated for mineral (Fe, Zn, Mn and Cu) uptake, it was found that the positive effect of SNP was heterogeneously affected. Depending on SNP application, it was found that malondialdehyde (MDA) amount decreased in leaf in 100 µM Cd applications while hydrogen peroxide (H2O2) amount decreased in 100 and 500 µM Cd applications. When antioxidant enzyme activities were examined, it was found that catalase (CAT) and ascorbate peroxidase (APX) enzyme activities increased with 100 µM SNP applications under all Cd applications. As a result, it was found that SNP application under Cd stress generally supports physiological processes positively in white poplar, suggesting that NO molecule plays important alleviating roles in plant metabolism.

An Efficient Plant Regeneration System for Sorghum bicolor - a Valuable Major Cereal Crop

  • Baskaran P.;Jayabalan N.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.247-257
    • /
    • 2005
  • An efficient, rapid and large-scale in vitro clonal propagation of agronomically important Indian cereal crop genotypes (NSH27 & K5) of Sorghum bicolor (L.) Moench. by enhanced shoot proliferation in shoot tip segments was designed. MS medium fortified with plant growth regulators and coconut water markedly influenced in vitro propagation of Sorghum bicolor. In vitro plantlet production system has been investigated on Murashige and Skoog (MS) medium with the synergistic combination of 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), 5% coconut water and 3% sucrose which promoted the maximum number of shoots as well as beneficial shoot length. Subculturing of shoot tip segments on a similar medium enabled continuous production of more than 100 healthy shoots with similar frequency. When the healthy shoot clumps were cultured on MS medium fortified with 6-benzyladenine ($22.2\;{\mu}M$), kinetin ($4.6\;{\mu}M$), adenine sulphate ($2.8\;{\mu}M$), ${\alpha}$-naphthaleneacetic acid ($2.7\;{\mu}M$), ascorbic acid ($30.0\;{\mu}M$) and 5% coconut water, a rapid production of axillary and adventitious buds was developed after 8 wk culture. More than 300 shoots were produced 10 wk after culture. Rooting was highest (100%) on half strength MS medium containing 22.8 mM IAA. Micropropagated plants established in garden soil, farmyard soil and sand (2:1:1) were uniform and identical to the donor plant with respect to growth characteristics. These plants grew normally without showing any traits.

Production of Haploid and Doubled Haploid Plants from Isolated Microspore Culture of Hot Pepper (Capsicum annuum L.) (고추 소포자를 이용한 반수체 및 배가반수체 생산)

  • Eun Joon Park;Yul Kyun Ahn;Doek Ho Kwon;Eun Young Yang
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.25 no.4
    • /
    • pp.90-102
    • /
    • 2024
  • Haploid/double haploid plants developed from isolated microspores can significantly accelerate plant breeding. Haploid plants can naturally double their chromosomes to create a pure homozygous line of diploid plants. We present a method for producing embryos from isolated microspores of hot peppers (Capsicum annuumL.). We analyzed the polyploidization levels of the regenerated plants. The donor plants produced the optimal stage of microspores following short-term growth under low-intensity light, which resulted in high rates of embryogenesis and cotyledonary embryogenesis. To find an efficient culture method, liquid, doubled-layer, and 2-step cultures were tested. Liquid culture yielded the highest number of embryos, whereas the highest efficiency for cotyledonary embryogenesis was afforded by the doubled-layer culture. When normal cotyledonary embryos were transplanted onto a regeneration medium, they developed into complete plants. From these, 208 plants were tested via flow cytometric analysis, and 35.6% and 72.7% of the chromosomes from the Milyang-jare and LV2319 genotypes, respectively, were found to be spontaneous double haploids. These results are the same as those obtained on analyzing horticultural characteristics, including the size of leaves and the size and shape of fruits. The present study provides information on the practical application of isolated microspore culture of hot peppers, factors that affect embryogenesis, and methods for polyploidy testing.

Metabolic, Osmoregulatory and Nutritional Functions of Betaine in Monogastric Animals

  • Ratriyanto, A.;Mosenthin, R.;Bauer, E.;Eklund, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1461-1476
    • /
    • 2009
  • This review focuses on the metabolic and osmoregulatory functions of betaine and its impact on nutrient digestibility and performance in pigs and poultry. Betaine is the trimethyl derivative of the amino acid glycine, and is present in plant and animal tissue. It has been shown to play an important role in osmoregulation of plants, bacteria and marine organisms. Due to its chemical structure, betaine exerts a number of functions both at the gastrointestinal and metabolic level. As a methyl group donor, betaine is involved in transmethylation reactions and donates its labile methyl group for the synthesis of several metabolically active substances such as creatine and carnitine. Therefore, supplementation of betaine may reduce the requirement for other methyl group donors such as methionine and choline. Beneficial effects on intestinal cells and intestinal microbes have been reported following betaine supplementation to diets for pigs and poultry, which have been attributed to the osmotic properties of betaine. Furthermore, betaine potentially enhances the digestibility of specific nutrients, in particular fiber and minerals. Moreover, at the metabolic level, betaine is involved in protein and energy metabolism. Growth trials revealed positive effects of supplemental betaine on growth performance in pigs and poultry, and there is evidence that betaine acts as a carcass modifier by reducing the carcass fat content. In conclusion, due to its various metabolic and osmoregulatory functions, betaine plays an important role in the nutrition of monogastric animals.

The Experimental Model Development of Antibiotic Resistance Gene Transfer Characteristics with Various Micropollutants (미량오염물질에 의한 항생제 내성 유전자 전이 특성에 대한 실험모델 개발)

  • Kim, Doocheol;Oh, Junsik;Kim, Sungpyo
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.6
    • /
    • pp.911-916
    • /
    • 2012
  • Recently, antibiotic resistant genes (ARGs) in the environment are emerging as pollutants, since these genetic contaminants can eventually be transferred to human pathogens. The aim of this study was to develop the experimental model of antibiotic resistant gene (ARG) plasmid transfer as a function of various environmental conditions. For this purpose, the multi drug resistant plasmid pB10, which is known to be originally isolated from a wastewater treatment plant, was selected as a model transfer plasmid and Escherichia coli $DH5{\alpha}$ containing pB10 was used as a model donor. Pseudomonas aeruginosa, an opportunistic pathogen, was selected as the recipient for the conjugation experiment. When the donor and recipient were exposed to various stressors including antibiotics and heavy metal as a function of the concentrations (10, 100 and, 1000 ppb), statistically increased plasmid transfer rate was observed at a concentration of 10 ppb of tetracycline and sulfamethoxazole compared to control (no antibiotic exposure). Accordingly, the developed experimental ARG model by various stressor is a promising tool for evaluating the dissemination of ARGs by micro-contaminants in aquatic environment.

식물의 물질생산과 수분스트레스

  • 김준호
    • Proceedings of the Botanical Society of Korea Conference
    • /
    • 1985.08b
    • /
    • pp.59-71
    • /
    • 1985
  • In rice, limited efforts have been made to identify genes by the use of insertional mutagens, especially heterologous transposons such as the maize Ac/Ds. We constructed Ac and gene trap Ds vectors and introduced them into the rice genome by Agrobacterium-mediated transformation. In this report, rice plants that contained single and simple insertions of T-DNA were analyzed in order to evaluate the gene-tagging efficiency. The 3'end of Ds was examined for putative splicing donor sites. As observed in maize, three splice donor sites were identified at the 3'end of the Ds in rice. Nearly 80% of Ds elements wered excised from the original T-DNA sites, when Ac cDNA was expressed under a CaMV 35S promoter. Repetitive ratoon culturing was performed to induce new transpositions of Ds in new plants derived from cuttings. About 30% of the plants carried at least one Ds that underwent secondary transposition in the later cultures. 8% of transposed Ds elements expressed GUS in various tissues of rice panicles. With cloned DNA adjacent to Ds, the genomic complexities of the insertion sites were examined by Southern hybridization. Half of the Ds insertion sites showed simple hybriodization patterns which could be easily utilized to locate the Ds. Our data demonstrate that the Ac/Ds mediated gene trap system could prove an excellent tool for the analysis of functions of genes in rice. We discuss genetic strategies that could be employed in a largee scale mutagenesis using a heterologous Ac/Ds family in rice.

  • PDF

Effect of Growth Inhibitor Produced by Thuja orientalis (측백나무에 들어 있는 생장억제물질의 작용)

  • Kil, Bong-Seop
    • The Korean Journal of Ecology
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1993
  • To elucidate phytotoxic effects on the growth of receptor plant, germination and growth experiment of selected species have been performed with aqueous extracts and volatile substances of leaf and of donor plant, Thuja orientalis. The extracts of T. inversely proportional to the concentration. Gas chromatography method was employed for analysis and indentification of phytotoxic substances from T. orientalis. Forty-two kinds of KDICicals including ${\alpha}-thujone$ were identified from T. orientalis essential oil. Bioassay was performed with 6 KDICical such as ${\alpha}-pinene, \;{\alpha}-terpinene, \;{\gamma}-terpinene, \; {\beta}-myrcene$, and among them bornyl acetate was the strongest growth inhibitor.

  • PDF

Inhibitory Effect of Simazine on Photosynthetic Electron Transport Activity in Anabaena inequalis (Anabaena의 광합성 전자전달 활성에 미치는 Simazine의 억제효과)

  • 권벽동
    • Journal of Plant Biology
    • /
    • v.31 no.3
    • /
    • pp.217-226
    • /
    • 1988
  • Effects of simazine [2-chloro-4,6-bis(methylamino)-s-triazine] on the photochemical reactions of isolaed spinach chloroplasts and crude thylakoids of Anabaena inequalis UTEX B-381 were compared. Simazine inhibited photosynthetic O2 evolution and increased the chlorophyll fluorescence in whole cells of Anabaena. The electron transfer from diphenylcarbazide to 2,6-dichlorophenolindophenol was inhibited by simazine treatment in spinach chloroplasts, but not in crude thylakoids of Anabaena. In spinach chloroplasts, the chlorophyll fluorescence was increased by simazine treatment in the presence of diphenylcarbazide and ferricyanide, but not in the presence of diphenylcarbazide and silicomolybdate. In crude thylakoids of Anabaena, simazine treatment did not increase the chlorophyll fluorescence in the presence of either diphenylcarbazide and silicomolybdate, or diphenylcarbazide and ferricyanide. There results suggest that the inhibitory site of simazine on photosynthetic electron transport chain of anabaena is different from that of spinach chloroplasts. And there may be a possiblity that the inhibition site of simazine in Anabaena lies on the donor side of photosystem II, before the site of electron donation by diphenylcarbazide.

  • PDF