• Title/Summary/Keyword: dominant height

Search Result 356, Processing Time 0.025 seconds

THE CLINICAL RELIABILITY AND EFFECTIVENESS OF THE POSTERO-ANTERIOR CEPHALOMETRIC VIEW, SUBMENTOVERTEX VIEW & PANORAMIC VIEW IN THE DIAGNOSIS OF THE FACIAL ASYMMETRY (안면 비대칭 환자 진단에 있어서 후전방두부 방사선사진과 이하두정 방사선사진 및 파노라마 방사선사진의 임상적 효용성)

  • Choi Eun-Young;Park Tae-Won
    • Journal of Korean Academy of Oral and Maxillofacial Radiology
    • /
    • v.24 no.2
    • /
    • pp.427-437
    • /
    • 1994
  • Clinical examination, photometric evaluation, & radiographic analysis have been used to evaluate the asymmetry of the face. Commonly used skull radiographs to assess skeletal asymmetry include poatero-anterior cephalometries, submentovertex view, & panoramic view. The purpose of this study is the comparison of the reliance of the postero-anterior cephalometric view, submentovertex view, & panoramic view in the asymmetry evaluation. All measurements were performed on the each radiographs of 31 control group & 30 asymmetric group. The measurements are MSL(midsagittal plane)-Co, MSL-Go, MSL-Me, MSL-Al, MSL-Bl, Mn. Ramus Height(Co-Go), Mn. Body Length(Go-Me), and Total Mn. Length(Co-Me). The results were as follows: 1. The lack of either a right-sided or left-sided asymmetric dominant was found. 2. The postero-anterior cephalometric view & submentovertex view relatively agreed with each other in the result. The postero-anterior cephalometric view & submentovertex view had the clinical reliability & effectiveness in the diagnosis of the skeletal asymmetry(p<0.05). 3. The panoramic view showed more magnification compared to the other radiographs. In the vertical measurements the panoramic view had clinical reliability relatively(p<0.05). But we cannot rely on the horizontal measurements in the panoramic view(p>0.05).

  • PDF

Micro-Crack Analysis from Ultra-Precision Diamond Turning of IR Optic Material (적외선 광학 소재의 초정밀 선삭가공시 발생하는 미세균열 연구)

  • Jeong, Byeongjoon;Kim, Geon-Hee;Myung, Tae Sik;Chung, Eui-Sik;Choi, Hwan-Jin;Yeo, In Ju;Jeon, Minwoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.33 no.11
    • /
    • pp.905-910
    • /
    • 2016
  • Infrared (IR) optic lens can be fabricated by a single point diamond turning (SPDT) machine without subsequent polishing process. However, this machining process often leaves micro-cracks that deteriorate the surface quality. In this work, we propose an experimental design to remove micro-cracks on IR lens. The proposed design gathered data between cutting process condition and Rt surface roughness. This is of great importance because the scale of micro-cracks is a few micrometer. Rt surface roughness is suitable for analyzing maximum peak height signals of the profile. The experimental results indicate that feed per revolution variable is one of the most dominant variable, affecting the generation micro-cracks on IR lens surfaces.

The effect of field-line twist on the dynamic and electric current structures of emerging magnetic field on the Sun

  • An, Jun-Mo;Lee, Hwan-Hee;Kang, Ji-Hye;Magara, Tetsuya
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.36 no.2
    • /
    • pp.102.1-102.1
    • /
    • 2011
  • In this study we use three-dimensional magnetohydrodynamic simulations to investigate how the dynamic state of emerging magnetic field is related to the twist of field lines. Emerging magnetic field forms a magnetic structure on the Sun where various kinds of activity such as solar flares, jets, and coronal mass ejections are observed. To understand the physical mechanism for producing such activity, we have to know the dynamic nature of this structure. Since flares are the manifestation of rapidly dissipating electric current in the corona, we also investigate the distribution of current density inside the structure and examine how it depends on the field-line twist. To demonstrate the dynamic structure of emerging magnetic field, we focus on the factors characterizing the geometric property and stratification of emerging magnetic field, such as the curvature of field line and the scale height of field strength. These two factors show that emerging field forms a two-part structure in which the central part is close to a force-free state while the outer marginal part is in a fairly dynamic state where magnetic pressure force is dominant. We discuss how the field-line twist affects the two-part structure and also explain a possible relation between electric current structure and sigmoid observed in a preflare phase.

  • PDF

High-Resolution Flow Simulations Around a Steep Mountainous Island in Korea Using a CFD Model with One-way Nested Grid System

  • Mun, Da-Som;Kim, Jae-Jin
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.4
    • /
    • pp.557-571
    • /
    • 2020
  • High-resolution flows around a steep mountainous island (Ulleungdo) in Korea were simulated by a computational fluid dynamics (CFD) model. To cover entire Ulleungdo and to resolve the topography around the Ulleungdo automatic synoptic observing system (ASOS) with high resolution, one-way nested grid system with large (60 m), and small (20 m) grid sizes was applied in the CFD model simulations. We conducted the numerical simulations for 16 inflow directions, and, for each inflow direction, we considered six different wind velocities(5, 10, 15, 20, 25, and 30 m s-1) at the reference height (1,000 m). The effects of topography on surface wind observations were well reflected in the observed wind roses for the period of January 01, 2012 ~ December 31, 2016 at the Ulleungdo ASOS and marine buoy. Wind roses at the Ulleungdo ASOS was reproduced based on the CFD simulations. The changes in surface winds at the Ulleungdo ASOS caused by surrounding topography were relatively well simulated by the CFD model. The simulated wind-rose indicated that south-southwesterly and northeasterly were the dominant wind directions, which were also observed at the Ulleungdo ASOS. We investigated the flow characteristics around the Ulleungdo ASOS for northwesterly, south-southwesterly, and northeasterly winds in detail.

3-D Axisymmetric Fluid-Structure-Soil Interaction Analysis Using Mixed-Fluid-Element and Infinite-Element (혼합형 유체요소와 무한요소를 이용한 3차원 축대칭 유체-구조물-지반 상호작용해석)

  • 김재민;장수혁;윤정방
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.257-266
    • /
    • 1999
  • This paper presents a method of seismic analysis for a cylindrical liquid storage structure on/in horizontally layered half.space considering the effects of the interior fluid and exterior soil medium in the frequency domain. To capture the essence of fluid-structure-soil interaction effects effectively, a mixed finite element with two-field (u, p) approximation is employed to model the compressive inviscid fluid, while the structure and soil medium are presented by the 3-D axisymmetric finite elements and dynamic infinite elements. The present FE-based method can be applied to the system with complex geometry of fluid region as well as with inhomogeneous near-field soil medium, since it can directly model both the fluid and the soil. For the purpose of verification, dominant peak frequencies in transfer functions for horizontal motions of cylindrical fluid storage tanks with rigid massless foundation on a homogeneous viscoelastic half.space are compared with those by two different added mass approaches for the fluid motion. The comparison indicates that the Present FE-based methodology gives accurate solution for the fluid-structure-soil interaction problem. Finally, as a demonstration of versatility of the present study, a seismic analysis for a real-scale LNG storage tank embedded in layered half.space is carried out, and its member forces along the height of the structure are compared with those by an added mass approach developed by the present writers.

  • PDF

Propagation of the ionizing radiations leaked out of bright H II regions into the diffuse interstellar medium

  • Seon, Kwang-Il
    • Bulletin of the Korean Space Science Society
    • /
    • 2009.10a
    • /
    • pp.33.2-33.2
    • /
    • 2009
  • Diffuse ionized gas (DIG or warm ionized medium, WIM) outside traditional regions is a major component of the interstellar medium (ISM) not only in our Galaxy, but also in other galaxies. It is generally believed that major fraction of the Halpha emission in the DIG is provided by OB stars. In the "standard" photoionization models, the Lyman continuum photons escaping from bright H II regions is the dominant source responsible for ionizing the DIG. Then, a complex density structure must provide the low-density paths that allow the photons to traverse kiloparsec scales and ionize the gas far from the OB stars not only at large heights above the midplane, but also within a galactic plane. Here, I present Monte-Carlo models to examine the propagation of the ionizing radiation leaked out of traditional H II regions into the diffuse ISM applied to two face-on spirals M 51 and NGC 7424. We find that the "standard" scenario requires absorption too unrealistically small to be believed, but the obtained scale-height of the galactic disk is consistent with those of edge-on galaxies. We also report that the probability density functions of the Halpha intensities of the DIG and H II regions in the galaxies are log-normal, indicating the turbulence property of the ISM.

  • PDF

Vehicle-related Fine Particulate Air Pollution in Seoul, Korea

  • Bae, Gwi-Nam;Lee, Seung-Bok;Park, Su-Mi
    • Asian Journal of Atmospheric Environment
    • /
    • v.1 no.1
    • /
    • pp.1-8
    • /
    • 2007
  • Vehicle exhaust is a dominant source of air pollutants in urban areas. Since people are easily exposed to vehicle exhaust particles while driving a car and/or traveling via public transportation, air pollution near traffic has been extensively studied in developed countries. In this paper, investigations on vehicle-related fine particulate air pollution at roadsides and on roads in Seoul, Korea were reviewed to understand air pollution near traffic. Comparison of $PM_{10}$ concentrations in Seoul showed that roadside air is more contaminated than urban air, implying that exposure levels near vehicular emissions are more critical to sensitive persons. Concentrations of ultrafine particles and BC (black carbon) at roadsides of Seoul fluctuate highly for short durations, responding to traffic situations. Diurnal variations of ultrafine particles and BC concentrations at roadsides seem to be affected by traffic volume, mixing layer height, and wind speed. Concentrations of ultrafine particles and BC decrease as distance from the road increases due to dilution during transport. On-road air pollution seems to be more severe than roadside air pollution in Seoul. Since nearby traffic air pollution has not been well understood in Seoul, further studies including various vehicular air pollutants and representative locations are needed.

Synthesis of Human Body Shape for Given Body Sizes using 3D Body Scan Data (3차원 스캔 데이터를 이용하여 임의의 신체 치수에 대응하는 인체 형상 모델 생성 방법)

  • Jang, Tae-Ho;Baek, Seung-Yeob;Lee, Kun-Woo
    • Korean Journal of Computational Design and Engineering
    • /
    • v.14 no.6
    • /
    • pp.364-373
    • /
    • 2009
  • In this paper, we suggest the method for constructing parameterized human body model which has any required body sizes from 3D scan data. Because of well developed 3D scan technology, we can get more detailed human body model data which allow to generate precise human model. In this field, there are a lot of research is performed with 3D scan data. But previous researches have some limitations to make human body model. They need too much time to perform hole-filling process or calculate parameterization of model. Even more they missed out verification process. To solve these problems, we used several methods. We first choose proper 125 3D scan data from 5th Korean body size survey of Size Korea according to age, height and weight. We also did post process, feature point setting, RBF interpolation and align, to parameterize human model. Then principal component analysis is adapted to the result of post processed data to obtain dominant shape parameters. These steps allow to reduce process time without loss of accuracy. Finally, we compare these results and statistical data of Size Korea to verify our parameterized human model.

Estimation of Microwave Path Loss and Cross-Polarization Coupling in a Simple Urban Area

  • Yisok Oh;No, Chan-Ho;Sung, Hyuk-Je;Lee, Byung-Hoon;Koo, Yeon-Geon
    • Journal of electromagnetic engineering and science
    • /
    • v.1 no.1
    • /
    • pp.30-36
    • /
    • 2001
  • Whereas it is well known that microwave propagation around corners of urban area is estimated well by the uniform geometrical theory of diffraction (UTD), it is not clear how much depolarization occurs at a given receiver position and how much transmission through walls affects to total path loss. This paper presents the results of the ray tracing simulation to answer these questions. Simulations of microwave propagation around corners were performed for various line-of-sight (LOS) and out-of-sight(OOS) positions of a receiver, by summing the electrical fields of reflected, diffracted and transmitted rays coherently. Since height difference between transmitter and receiver, as well as ground plane, causes depolarization, the ray tracing simulation estimates the cross-polarization coupling. It was found that the cross-polarization coupling decreases as receiver moves away from transmitter. Another part of the study focused on the signal transmitted through building walls of the corner. It was found that the transmitted field is dominant at OOS region when the conductivity of the walls is low (for example, lower than 0.0l S/m). The simulation results of the ray tracing technique in this study agreed well with an experimental measurement around corners.

  • PDF

Development of Full ice-cream cone model for HCME 3-D parameters

  • Na, Hyeonock;Moon, Yong-Jae;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2016
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 26 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs are dominant over shallow ice-cream cone CMEs. Thus we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection speeds with the observed ones. We apply this model to 12 SOHO halo CMEs and compare the results with those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data.

  • PDF