• Title/Summary/Keyword: domestic satellites

Search Result 74, Processing Time 0.021 seconds

KASI's contributions to Space Weather over the past 10 years

  • Cho, Kyungsuk;Park, Young-Deuk
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.64.4-65
    • /
    • 2015
  • For the past decade, supported by the Korean government, the solar and space weather group of Korea Astronomy and Space Science Institute (KASI) has been researching towards the prevention of hazardous effects on Korean satellites, the stability of wireless telecommunications, and the safety of polar route aviation. So far, we have expanded the ground observation system, made space data more accessible, developed more advanced models for space weather forecasting, from which we have been providing forecasting services to a satisfied domestic clientele. Alongside that, we have continued our research on solar activities and the Sun-Earth connection. In this talk, I will summarize our contributions to space weather over the past 10 years and discuss future plans for next decade.

  • PDF

A Review on Major Foreign Research Trend of Monomethylhydrazine Reaction for Space Propulsion Part II : Chemical Reaction of Monomethylhydrazine-Dinitrogen Tetroxide (우주추진용 모노메틸하이드라진 반응에 대한 주요 해외연구 동향 조사 Part II : 모노메틸하이드라진-사산화이질소의 화학반응)

  • Jang, Yohan;Lee, Kyun Ho
    • Journal of Aerospace System Engineering
    • /
    • v.10 no.1
    • /
    • pp.74-81
    • /
    • 2016
  • Space propulsion system produces required thrust for satellites and space launch vehicles by using chemical reactions of a liquid fuel and a liquid oxidizer typically. Among several liquid propellants, the monomethylhydrazine-dinitrogen tetroxide is expecially preferred for a GEO satellite propellants due to their better storability in liquid phase during a long mission life under a freezing space environment. Recently, a development of the monomethylhydrazine-dinitrogen tetroxide bipropellant system becomes important as the national space program requires the heavier and the more efficient space system. Thus, the objective of the present study is to review a foreign research trend of a chemical reaction between the monomethyhydrazine fuel and the dinitrogen tetroxide oxidizer to understand a fundamental basis of their characteristics to prepare for domestic development in future.

Optical Monitoring Strategy for Avoiding Collisions of GEO Satellites with Close Approaching IGSO Objects

  • Choi, Jin;Jo, Jung Hyun;Yim, Hong-Suh;Choi, Young-Jun;Park, Maru;Park, Sun-Youp;Bae, Young-Ho;Roh, Dong-Goo;Cho, Sungki;Park, Young-Sik;Jang, Hyun-Jung;Kim, Ji-Hye;Park, Jang-Hyun
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.411-417
    • /
    • 2015
  • Several optical monitoring strategies by a ground-based telescope to protect a Geostationary Earth Orbit (GEO) satellite from collisions with close approaching objects were investigated. Geostationary Transfer Orbit (GTO) objects, Inclined GeoSynchronous Orbit (IGSO) objects, and drifted GEO objects forced by natural perturbations are hazardous to operational GEO satellites regarding issues related to close approaches. The status of these objects was analyzed on the basis of their orbital characteristics in Two-Line Element (TLE) data from the Joint Space Operation Center (JSpOC). We confirmed the conjunction probability with all catalogued objects for the domestic operational GEO satellite, Communication, Ocean and Meteorological Satellite (COMS) using the Conjunction Analysis Tools by Analytical Graphics, Inc (AGI). The longitudinal drift rates of GeoSynchronous Orbit (GSO) objects were calculated, with an analytic method and they were confirmed using the Systems Tool Kit by AGI. The required monitoring area was determined from the expected drift duration and inclination of the simulated target. The optical monitoring strategy for the target area was analyzed through the orbit determination accuracy. For this purpose, the close approach of Russian satellite Raduga 1-7 to Korean COMS in 2011 was selected.

A Study on A Scheme to Improve the Competitive Power of the Korea Satellite Industry (우리나라 위성 산업 경쟁력 제고 방안에 관한 연구)

  • Eun, Jong Won
    • Journal of Satellite, Information and Communications
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2013
  • Space technology is a core technology which is emerging as the most competitive industry in the 21st century. However, it is said that private enterprises may have some limitations to run the space business independently because the space industry requires not only to enormously spend the amount of investment at the beginning stage of business but also to have lots of difficulties to get the amount of investment in the short period of time. Therefore, the advanced countries of having the space industry such as America, Japan, France and so on have been developing the space technologies through the help of their governments to some level at the beginning stage of business. Korea established the space development promotion law in 2005. Also Korea has been making efforts to correct the national space development middle and long term basic plans. However, while Korea becomes the 8th economic country in the world, Korea does not have a large enterprise which has ability to supply the domestic satellite demands, and to export satellites to foreign countries by developing satellites without having any help from foreign companies. Therefore, this paper described the activating scheme of satellite industry to efficiently carry out the Korea's space development mission, and to enforce the global competitive power.

Application of Spaceborne Earth Remote Sensing Information (인공위성 원격탐사 정보의 활용)

  • 가민호
    • Korean Journal of Remote Sensing
    • /
    • v.16 no.3
    • /
    • pp.261-279
    • /
    • 2000
  • Today, the development of spaceborne Earth remote sensing is characterised by the increasing number and various types of remote sensing satellites, which are being operated in the low altitude and geostationary orbits with the help of rapid development of modern space technologies. It is believed that around 15 countries have programs to own their spaceborne Earth remote sensing systems, and the number of systems will be reached to some tens until the end of 2000 years. It is expected that Korean remote sensing satellites will be launched in sequence according to the national space program. The befinits will be magnificient because of the wide range of application area. Application of remote sensing information to the social infra implies that the potential customers can access the information, mission and the characteristics of the operation, and it is necessary to be supplied more information about systems and mission areas to our domestic users for proper applications. In this review we will survey the applications of the information acquired by the systems of USA, Russia and other countries. In this review we will discussed withing general application area, missions and systems.

Future Direction of Mission Operation System for Satellite Constellation and the Automation Priority Evaluation (군집위성 임무운영시스템 발전방향 및 자동화 우선순위 평가)

  • Jung, Insik;Yoon, Jeonghun;Lee, Myungshin;Lee, Junghyun;Kwon, Kybeom
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.3
    • /
    • pp.10-22
    • /
    • 2022
  • According to the Space Development Promotion Basic Plan, more than 110 satellites are expected to be deployed by 2031. Accordingly, the operation concept and technology for satellites constellation are required, compared to the existing few multi-satellite operations. It is essential to automate and optimize the mission operation system, for efficient operation of the satellite constellation, and preparations are urgently needed for the operation of satellite constellation in domestic as well. In this study, the development direction and strategy of the mission operation system applying automation and optimization for efficient operation of the satellite constellation are proposed. The framework for evaluating the automation level and priority of the mission operation system was developed, to identify the tasks to which automation should be applied preferentially.

Design of Shaped Offset Gregorian Antennas for Domestic Satellites (국내위성을 위한 경면수정 오프셋 그레고리안 안테나의 설계)

  • 이동진;최학근;윤소현;한재홍;박종흥;이성팔
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.5
    • /
    • pp.765-776
    • /
    • 2001
  • In this paper, a shaped offset gregorian antenna is electrically designed for Ku band FSS antennas of the domestic communications and broadcasting satellite which will be launched in the near future. For this, a design procedure for shaped offset gregorian antennas is described in detail, and a satellite antenna is designed by using the described design procedure. The radiation characteristics of the designed antenna are evaluated and compared with the design goals. The designed antenna is found to have 1.2$^{\circ}C$ beamwidth, 38.57 dBi EOC gain, and 43.19 dBi gain at Tx frequency 12.25 GHz and 1.08$^{\circ}$ beamwidth, 38.12 dBi EOC gain, and 44.11 dBi gain at Rx frequency 14.0 GHz. And also, side lobe levels and cross-polarization levels are less than -30 dB and -33 dB, respectively. From these results the designed antenna is found to be able to use for the domestic satellite FSS antennas.

  • PDF

Global Unmanned Aerial Vehicle Utilization Research Trends

  • Moon, Ho-Gyeong;Kim, Han;Choi, Nak-Hyun;Kim, Dong-Pil
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • v.1 no.1
    • /
    • pp.31-40
    • /
    • 2020
  • The rapid development of technologies in unmanned aerial vehicles (UAVs) has led to their use in various areas. UAVs are mainly used for commercial purposes, but their utilization is increasingly important in other areas because their operation cost is less than satellites and aerial imaging. The utilization of UAVs in the environment/ecology area is relatively new. Therefore, identifying the trends of UAV-related spatial information is significant in basic research for UAV utilization. This study quantitatively identified domestic and international research trends related to UAV utilization and analyzed research areas. An attempt was also made to identify upcoming UAV-related topics in the environment/ecology research field using text mining to analyze the bibliographic information of global research literature. Domestic UAV-related studies were classified into seven clusters where basic research on "UAV technology/industry trends" was abundant, and studies on data collection and analysis through UAV remote sensing technology have increased since 2015. Eight clusters were identified for international studies where the most active research area international was "remote sensing technology/data analysis". In addition, Canopy, Classification, Forest, Leaf Area Index, Normalized Difference Vegetation Index, Temperature, Tree, and Atmosphere appeared as the main keywords related to environment and ecology. The appearance frequencies and association strengths were high because the advancement in UAV optical sensor technology and the rapid development of image processing technology enabled the acquisition of data that could not be obtained from existing spatial information. They are recognized as future research topics as related domestic studies have begun corresponding to international research.

Visibility Analysis of Iridium Communication for SNIPE Nano-Satellite (SNIPE 초소형위성용 Iridium 통신 모듈의 가시성 분석)

  • Cho, Dong-Hyun;Kim, Hongrae;Kim, Hae-Dong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.2
    • /
    • pp.127-135
    • /
    • 2022
  • Compared to the continuous increase of domestic nano-satellite development cases, the initial communication success rate is relatively low. In a situation where communication cases of LEO satellites using commercial satellite communication networks are increasing recently. In this situation, the SNIPE project developed by the KASI(Korea Astronomy and Space Science Institute), KARI(Korea Aerospace Research Institute), and Yonsei University apply an Iridium module for communication test to the SNIPE nano-satellites. Therefore, in this paper, the visibility analysis of the iridium module on the SNIPE satellite was analyzed under considering the orbital and communication environment of the iridium satellite constellation and the attitude control mode. In the case of LEO satellites, the communication possibility was limited due to the relatively small iridium communication coverage for high altitude and the high doppler shift considered in the iridium communication network. For this reason, in this paper, it could be simulated that there was a more performance difference according to the difference in relative RAAN(Right Ascension of Ascending Node) angle with the Iridium constellation. Finally, by checking the visibility of communication module under the tumbling situation that occurred during the initial deployment of the nano-satellite, the possibility of using the iridium communication technology was analyzed.

Study on Effective Airworthiness Certification Methods and Airworthiness Certification Standards for Aerial Launch Platform using Large Civil Aircraft (대형 민간항공기를 활용한 공중발사 플랫폼의 효율적 감항인증방안 및 감항인증기준 연구)

  • Oh, Yeon-Kyeong;Kim, Suho;Yoo, Min Young;Choi, Seong Hwan;Seo, Hyun Woo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.4
    • /
    • pp.28-34
    • /
    • 2022
  • In 2021, Virgin Orbit converted a 747-400 aircraft into an air launch platform, and successfully launched it twice in February and July. Compared to the existing ground launch, interest in the air launch is increasing due to its great utility, such as its independence from the launch location or weather, cost reducing factor, shorter launch preparation time, and its benefit pursuant to altitude and speed. Additionally, as small satellites have similar performance to mid/large satellites in the past due to the miniaturization and precision of electronic equipment, small satellite launches are expected to dominate in the future. In this paper, institutional certification methods such as domestic, overseas, civilian and military airworthiness certification regulations/procedures are reviewed to ensure flight safety of aerial projectiles using large domestic civil aircraft, and applicable civil and military airworthiness certification technology standards are reviewed and analyzed. Additionally, we will review and suggest effective airworthiness certification application plans that reflect the reality, and present airworthiness certification standards (draft) for aerial launch vehicles, by analyzing applicable airworthiness certification technical standards when remodeling aerial launch vehicles.