• Title/Summary/Keyword: domain-wall width

Search Result 25, Processing Time 0.025 seconds

Current-Induced Magnetic Domain-Wall Motion by Spin Transfer Torque: Collective Coordinate Approach with Domain-Wall Width Variation

  • Jung, Soon-Wook;Lee, Hyun-Woo
    • Journal of Magnetics
    • /
    • v.12 no.1
    • /
    • pp.1-6
    • /
    • 2007
  • The spin transfer torque generated by a spin-polarized current can induce the shift of the magnetic domain-wall position. In this work, we study theoretically the current-induced domain-wall motion by using the collective coordinate approach [Gen Tatara and Hiroshi Kohno, Phys. Rev. Lett. 92, 86601 (2004)]. The approach is extended to include not only the domain-wall position and the polarization angle changes but also the domain-wall width variation. It is demonstrated that the width variation affects the critical current.

Effect of a Ferromagnetic Layer Thickness on a Narrow Domain Wall Width (좁은 자벽의 두께에 강자성층의 두께가 미치는 영향)

  • Lim, Ho-Tack;You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.6
    • /
    • pp.303-306
    • /
    • 2005
  • Effect of a ferromagnetic layer thickness on a narrow domain wall width is investigated. It is found that the narrow domain wall is formed in ferromagnetic/nonmagnetic/ferromagnetic multi layer structure with a loc at interlayer exchange coupling, and that the width of the narrow domain wall is affected by the ferromagnetic layer thickness. We performed micromagnetics simulations for the $Fe_1/Cr/Fe_2$ system with the local interlayer exchange coupling, with fixed thickness (20-nm) of $Fe_2$ layer and various $Fe_1$ layer thickness (1, 2, 4, and 6 nm). Consequently, we confirmed that the thinner the $Fe_1$ layer thickness, the thinner the width of the domain wall is formed, because of the surface energy nature of the interlayer exchange coupling.

Width-Dependent Transition of Magnetic Domain Configuration in Nanostructured CoFe/Pt Multilayered Nanowires

  • Je, Soong-Geun;Lee, Jae-Chul;Kim, Kab-Jin;Min, Byoung-Chul;Shin, Kyung-Ho;Choe, Sug-Bong
    • Journal of Magnetics
    • /
    • v.17 no.4
    • /
    • pp.242-244
    • /
    • 2012
  • We report on the basis of experiments that magnetic domain structures exhibit a transition between single and dendrite domains with respect to the width of ferromagnetic nanowires. This transition is directly observed in CoFe/Pt multilayered nanowires having a width in the range of 580 nm to 4.2 ${\mu}m$ with a magnetic force microscope. Nanowires wider than 1.5 ${\mu}m$ show typical dendrite domain patterns, whereas the nanowires narrower than 690 nm exhibit single domain patterns. The transition occurs gradually between these widths, which are similar to the typical widths of the dendrite domains. Such a transition affects the strength of the domain wall propagation field; this finding was made by using a time-resolved magneto-optical Kerr effect microscope, and shows that the domain wall dynamics also exhibit a transition in accordance with the domain configuration.

SURFACE ROUGHNESS EFFECTS ON THE COERCIVITY OF THIN FILM HEADS

  • Kim, Hyunkyu;Horvath, M. Pardavi
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.663-666
    • /
    • 1995
  • The domain wall motion coercivity, $H_{c}$, of magnetic materials arises from the dependence of the wall energy on localized changes in material parameters (magnetization, anisotropy, exchange energy densities). However, in an otherwise perfectly homogeneous material, the domain wall energy might change due to the change in the volume of the wall versus the wall position. Thus, any surface roughness contributes to the coercivity. Assuming different two-dimensional surface profiles, characterized by average wavelengths ${\lambda}_{x}$ and ${\lambda}_{y}$, and relative thickness variations dh/h, the coercivity due to the surface roughness has been calculated. Compared to the one dimensional case, the 2D coercivity is reduced. Depending on the ratio of ${\lambda}$ to the domain wall width, $H_{c}$ has a maximum around 2, and increasing with dh/h. With the decreasing thickness of the thin film and GMR heads, it might be the domain factor in determining the coercivity.

  • PDF

Pinning potential of a perpendicular magnetic domain wall due to a point defect

  • Song, Kyungmi;Lee, Kyung-Jin
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2013.12a
    • /
    • pp.139-140
    • /
    • 2013
  • We investigate effect of a point defect on the pinning potential for a perpendicular magnetic domain wall based on the NEB method. We find that this method can give a reasonable value for the pinning potential and allows us to study the effect of various geometrical and magnetic properties on the pinning potential. In the presentation, we will discuss the effect of Ku and wire width on the pinning potential in detail.

  • PDF

Dynamics of Transverse Magnetic Domain Walls in Rectangular-shape Thin-film Nanowires Studied by Micromagnetic Simulations

  • Lee, Jun-Young;Choi, Sang-Kook;Kim, Sang-Koog
    • Journal of Magnetics
    • /
    • v.11 no.2
    • /
    • pp.74-76
    • /
    • 2006
  • Dynamic behaviors of transverse domain walls (TDWs) in rectangular shaped thin-film magnetic nanowires with different widths under applied magnetic fields less than the Walker field were studied by micromagnetic simulations. It was found that the velocity of stable TDWs in the viscous region increases from 147 to 419 m/s and their mass decreases from $6.24{\times}10^{-23}\;to\;2.70{\times}10^{-23}kg$ with increasing strength of the applied magnetic field ranging from 5 to 20 Oe for the nanowire with a dimension of 10 nm in thickness and $5{\mu}m$ in length, and 50 nm in width. With increasing the width of nanowires from 50 to 125 nm at a specific field strength of 5 Oe, the TDW's velocity also increases from 147 to 246 m/s and its mass decreases from $6.24{\times}10^{-23}\;to\;5.91{\times}10^{-23}kg$.

Effect of surface scratching on Barkhausen Noise in 3% Silicon Steel (3% 방향성 규소강판의 표면 선긋기에 의한 Barkhausen Noise에 관한 연구)

  • 박창만;이기암;황도근
    • Journal of the Korean Magnetics Society
    • /
    • v.4 no.2
    • /
    • pp.142-149
    • /
    • 1994
  • The Barkhausen noise was measured as the change of line width(39~1.22 mm) and scratching angle($90^{\circ}~50^{\circ}$) with respect of rolling direction in grain-oriented 3 % Si-Fe of 0.30 and 0.27 mm thickness. The two peak phenomena of the noise envelope observed for non-scratching and scratching of line width 39 mm was explained by large activation energy during $180^{\circ}$ domain wall nucleation and annihilation processes. The amplitudes of the noise envelpoes were decreased as the decrement of scratching line width, but did not almost changed below line width of 9.75 mm. It was explained that the decrease in the envelope with increasing scratching number is associated with lower activation energy of $180^{\circ}$ domain nucleation and annihilation in the vicinity of the scratching area. The noise power was decreased as narrower line width. The dependence of the power on the scratching angle was sharpest decreaded at the 50 angle.

  • PDF

Equilibrium Size of Domains in Ferroelectric Ceramics (강유전 요업체에서의 평형분역 크기)

  • 정훈택;김호기
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.6
    • /
    • pp.459-462
    • /
    • 1992
  • It has been reported that the size and characteristics of ferroelectric domains which have an essential role on the ferroelectric properties depend on the grain size of ferrolectric ceramics. Therefore understanding the change of domain characteristics with grain size is so important to know the dependence of dielectric constant, dielectric loss and aging on the grain size. In this research, the equilibrim domain with is calculated as d={{{{ SQRT { { 64 pi sigma a} over {3C11Ss2 } } }}. This calculated value is nearly same to the measured value of BaTiO3 and Pb(Zr0.4Ti0.6)O3 ceramics 90$^{\circ}$domain wall width. The calculated 90$^{\circ}$domain wall enerygy in Pb(Zr0.4Ti0.6)O3 which is obtained through the model is approximately 2$\times$10-2J/$m^2$.

  • PDF

Formation of a Narrow Domain Wall Using Local Exchange Coupled System (국소적 교환상호작용을 이용한 좁은 자벽의 생성)

  • You, Chun-Yeol
    • Journal of the Korean Magnetics Society
    • /
    • v.15 no.4
    • /
    • pp.221-225
    • /
    • 2005
  • Formation of a narrow magnetic domain wall is demonstrated by micromagnetics simulations. It is found that the domain wall width can be shrunk in a local exchange coupled system. The local exchange coupled system means that only a part of a ferromagnetic layer has an exchange coupling with another ferromagnetic layer. The system can be considered as two parts in the lateral dimensions: one is an exchange coupled region and another is a free region. Since the two regions have quite different local switching fields, the domain wall will be formed at the interface between the two regions at moderate field ranges.