• Title/Summary/Keyword: domain engineering

Search Result 6,491, Processing Time 0.034 seconds

Modal tracking of seismically-excited buildings using stochastic system identification

  • Chang, Chia-Ming;Chou, Jau-Yu
    • Smart Structures and Systems
    • /
    • v.26 no.4
    • /
    • pp.419-433
    • /
    • 2020
  • Investigation of structural integrity has been a critical issue in the field of civil engineering for years. Visual inspection is one of the most available methods to explore deteriorative components in structures. Still, this method is not applicable to invisible damage of structures. Alternatively, system identification methods are capable of tracking modal properties of structures over time. The deviation of these dynamic properties can serve as indicators to access structural integrity. In this study, a modal tracking technique using frequency-domain system identification from seismic responses of structures is proposed. The method first segments the measured signals into overlapped sequential portions and then establishes multiple Hankel matrices. Each Hankel matrix is then converted to the frequency domain, and a temporal-average frequency-domain Hankel matrix can be calculated. This study also proposes the frequency band selection that can divide the frequency-domain Hankel matrix into several portions in accordance with referenced natural frequencies. Once these referenced natural frequencies are unavailable, the first few right singular vectors by the singular value decomposition can offer these references. Finally, the frequency-domain stochastic subspace identification tracks the natural frequencies and mode shapes of structures through quick stabilization diagrams. To evaluate performance of the proposed method, a numerical study is carried out. Moreover, the long-term monitoring strong motion records at a specific site are exploited to assess the tracking performance. As seen in results, the proposed method is capable of tracking modal properties through seismic responses of structures.

Elastodynamic analysis by a frequency-domain FEM-BEM iterative coupling procedure

  • Soares, Delfim Jr.;Goncalves, Kleber A.;de Faria Telles, Jose Claudio
    • Coupled systems mechanics
    • /
    • v.4 no.3
    • /
    • pp.263-277
    • /
    • 2015
  • This paper presents a coupled FEM-BEM strategy for the numerical analysis of elastodynamic problems where infinite-domain models and complex heterogeneous media are involved, rendering a configuration in which neither the Finite Element Method (FEM) nor the Boundary Element Method (BEM) is most appropriate for the numerical analysis. In this case, the coupling of these methodologies is recommended, allowing exploring their respective advantages. Here, frequency domain analyses are focused and an iterative FEM-BEM coupling technique is considered. In this iterative coupling, each sub-domain of the model is solved separately, and the variables at the common interfaces are iteratively updated, until convergence is achieved. A relaxation parameter is introduced into the coupling algorithm and an expression for its optimal value is deduced. The iterative FEM-BEM coupling technique allows independent discretizations to be efficiently employed for both finite and boundary element methods, without any requirement of matching nodes at the common interfaces. In addition, it leads to smaller and better-conditioned systems of equations (different solvers, suitable for each sub-domain, may be employed), which do not need to be treated (inverted, triangularized etc.) at each iterative step, providing an accurate and efficient methodology.

Avalanche and Bit Independence Properties of Photon-counting Double Random Phase Encoding in Gyrator Domain

  • Lee, Jieun;Sultana, Nishat;Yi, Faliu;Moon, Inkyu
    • Current Optics and Photonics
    • /
    • v.2 no.4
    • /
    • pp.368-377
    • /
    • 2018
  • In this paper, we evaluate cryptographic properties of a double random phase encoding (DRPE) scheme in the discrete Gyrator domain with avalanche and bit independence criterions. DRPE in the discrete Gyrator domain is reported to have higher security than traditional DRPE in the Fourier domain because the rotation angle involved in the Gyrator transform is viewed as additional secret keys. However, our numerical experimental results demonstrate that the DRPE in the discrete Gyrator domain has an excellent bit independence feature but does not possess a good avalanche effect property and hence needs to be improved to satisfy with acceptable avalanche effect that would be robust against statistical-based cryptanalysis. We compare our results with the avalanche and bit independence criterion (BIC) performances of the conventional DRPE scheme, and improve the avalanche effect of DRPE in the discrete Gyrator domain by integrating a photon counting imaging technique. Although the Gyrator transform-based image cryptosystem has been studied, to the best of our knowledge, this is the first report on a cryptographic evaluation of discrete Gyrator transform with avalanche and bit independence criterions.

A Digital Hologram Encryption Method Using Data Scrambling of Frequency Coefficients

  • Choi, Hyun-Jun
    • Journal of information and communication convergence engineering
    • /
    • v.11 no.3
    • /
    • pp.185-189
    • /
    • 2013
  • A digital hologram generated by a computer calculation (computer-generated hologram or capture using charge-coupled device [CCD] camera) is one of the most expensive types of content, and its usage is expanding. Thus, it is highly necessary to protect the ownership of digital holograms. This paper presents an efficient visual security scheme for holographic image reconstruction with a low scrambling cost. Most recent studies on optical security concentrate their focus on security authentication using optical characteristics. However, in this paper, we propose an efficient scrambling method to protect a digital hologram. Therefore, we introduce in this paper several scrambling attempts in both the spatial domain and frequency domain on the basis of the results of analyzing the properties of the coefficients in each domain. To effectively hide the image information, 1/4, 1/256, and 1/16,384 of the original digital hologram needs to be scrambled for the spatial-domain scheme, Fresnel-domain scheme, and discrete cosine transform-domain scheme, respectively. The encryption schemes and the analyses in this paper can be expected to be useful in the research on encryption and other works on digital holograms.

Numerical study of a freely falling rigid sphere on water surface (수면 위 자유 낙하 및 충돌하는 강체 구의 수치해석 연구)

  • Ku, BonHeon;Pandey, Deepak Kumar;Lim, Hee-Chang
    • Journal of the Korean Society of Visualization
    • /
    • v.19 no.2
    • /
    • pp.15-25
    • /
    • 2021
  • Numerical studies on the hydrodynamics of a freely falling rigid sphere in bounded and unbounded water domains are presented having investigation on the drag coefficient, normalized velocity, surface pressure and skin friction coefficient as a function of time. Two different conditions of the bounded and unbounded domains have been simulated by setting the blockage ratio. Four cases of bounded domains (B.R. = 1%, 25%, 45%, 55%, 65% and 75%) have been taken, whereas the unbounded domain has been considered with 0.01%. In the case of the bounded domain (higher values of B.R.), a substantial reduction in normalized velocity and increase in the drag coefficient have been found in presence of the bounded domain. Moreover, bounded domains also yield a significant increase in the pressure coefficient when the sphere is partially submerged, but the insignificant effect is found on the skin friction coefficient. In the case of the unbounded domain, a significant reduction in normalized velocity occurs with a decrease in Reynolds number (Re) and also increase in the drag coefficient.

FACTORIZATION AND DIVISIBILITY IN GENERALIZED REES RINGS

  • Kim, Hwan-Koo;Kwon, Tae-In;Park, Young-Soo
    • Bulletin of the Korean Mathematical Society
    • /
    • v.41 no.3
    • /
    • pp.473-482
    • /
    • 2004
  • Let D be an integral domain, I a proper ideal of D, and R =D[It, $t^{-1}$] a generalized Rees ring, where t is an indeterminate. For suitable conditions, we show that R satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain) if and only if D satisfies the ACCP (resp., is a BFD, an FFD, a (pre-) Schreier domain, a G-GCD domain, a PVMD, a v-domain).

WEAK SOLUTION OF AN ARCH EQUATION ON A MOVING BOUNDARY

  • DAEWOOK KIM;SUDEOK SHON;JUNHONG HA
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.1
    • /
    • pp.49-64
    • /
    • 2024
  • When setting up a structure with an embedded shallow arch, there is a phenomenon where the end of the arch moves. To study the so-called moving domain problem, one try to transform a considered noncylindrical domain into the cylindrical domain using the transform operator, as well as utilizing the method of penalty and other approaches. However, challenges arise when calculating time derivatives of solutions in a domain depending on time, or when extending the initial conditions from the non-cylindrical domain to the cylindrical domain. In this paper, we employ the transform operator to prove the existence and uniqueness of weak solutions of the shallow arch equation on the moving domain as clarifying the time derivatives of solutions in the moving domain.

Transient response of 2D functionally graded beam structure

  • Eltaher, Mohamed A.;Akbas, Seref D.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.357-367
    • /
    • 2020
  • The objective of this article is investigation of dynamic response of thick multilayer functionally graded (FG) beam under generalized dynamic forces. The plane stress problem is exploited to describe the constitutive equation of thick FG beam to get realistic and accurate response. Applied dynamic forces are assumed to be sinusoidal harmonic, sinusoidal pulse or triangle in time domain and point load. Equations of motion of deep FG beam are derived based on the Hamilton principle from kinematic relations and constitutive equations of plane stress problem. The numerical finite element procedure is adopted to discretize the space domain of structure and transform partial differential equations of motion to ordinary differential equations in time domain. Numerical time integration method is used to solve the system of equations in time domain and find the time responses. Numerical parametric studies are performed to illustrate effects of force type, graduation parameter, geometrical and stacking sequence of layers on the time response of deep multilayer FG beams.

A Study of Frequency Mixing Approaches for Eddy Current Testing of Steam Generator Tubes

  • Jung, Hee-Jun;Song, Sung-Jin;Kim, Chang-Hwan;Kim, Dea-Kwang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.29 no.6
    • /
    • pp.579-585
    • /
    • 2009
  • The multifrequency eddy current testing(ECT) have been proposed various frequency mixing algorithms. In this study, we compare these approaches to frequency mixing of ECT signals from steam generator tubes; time-domain optimization, discrete cosine transform-domain optimization. Specifically, in this study, two different frequency mixing algorithms, a time-domain optimization method and a discrete cosine transform(DCT) optimization method, are investigated using the experimental signals captured from the ASME standard tube. The DCT domain optimization method is computationally fast but produces larger amount of residue.

SDR-Based Frequency Interference Emulator in the Space-Time Domain and Its Application

  • Yoon, Hyungoo;Um, Jungsun;Park, Jin-Soo;Jang, Byung-Jun
    • Journal of electromagnetic engineering and science
    • /
    • v.18 no.1
    • /
    • pp.58-62
    • /
    • 2018
  • In this study, we propose a software-defined radio-based frequency interference emulator in the space-time domain. This emulator can easily model actual interference environments because of the versatile programming capability of the universal software radio peripheral and LabVIEW. As an example of an interfering network using the contention-based multiple access scheme in the time domain, we emulate a coordinated Wi-Fi network that consists of one access point and two Wi-Fi nodes. Results show that our emulator can successfully model multiple interfering signals in the Wi-Fi network and easily adjust various space-time domain parameters.