• 제목/요약/키워드: domain decomposition methods

검색결과 98건 처리시간 0.02초

Overlapping method와 SPIHT Algorithm과 Lifting Steps을 이용한 3차원 손실 의료 영상 압축 방법 (3-D Lossy Volumetric Medical Image Compression with Overlapping method and SPIHT Algorithm and Lifting Steps)

  • 김영섭
    • 한국산학기술학회논문지
    • /
    • 제4권3호
    • /
    • pp.263-269
    • /
    • 2003
  • 이 논문은 3차원 정수 웨이브릿 변환을 이용한 손실 의료 영상 압축에 대한 방법을 보여준다. 의료영상에 3차원 웨이브릿 분할법과 3차원 spatial dependence tree를 이용한 Set Partitioning in Hierarchical Trees(SPIHT) algorithm을 제공한다. 또한 3차원 웨이브릿 분할법에서 정수 웨이브릿 필터들을 이용한 lifting방법을 이용하고, unitary 변환을 만들기 위하여 정확한 scaling을 이용한다. 압축률이 증가하면 할수록 인접한 coding unit사이에선 boundary effect가 생긴다. Video와 같지 않아서 인접한 coding unit사이에서의 boundary artifact는 보여서는 안 된다. 이러한 현상을 제거하기 위해서 인접한 coding unit사이에 axial domain으로 overlapping방법을 사용한다. 또한 코딩 할 때 여러 종류의 정수 필터들을 사용한다. 결과로 어떤 특정한 필터를 사용할 때 좋은 결과를 얻었고 overlapping방법을 사용했기 때문에 ringing artifacts는 거의 찾아 볼 수가 없게 되었다. 그리고 어두운 면을 코딩 할 때도 좋은 결과를 얻었다.

  • PDF

3차원 벡터필드 탄젠트 곡선 계산을 위한 사면체 분해 방법 (A Tetrahedral Decomposition Method for Computing Tangent Curves of 3D Vector Fields)

  • 정일홍
    • 디지털콘텐츠학회 논문지
    • /
    • 제16권4호
    • /
    • pp.575-581
    • /
    • 2015
  • 본 논문에서는 3차원 벡터필드의 탄젠트 곡선을 계산하는 효율적이고 정확한 방법을 제안한다. 탄젠트 곡선 상의 정확한 값을 구하지 못하고 단지 탄젠트 곡선의 근사치를 구하는 Runge-Kutta 같은 기존의 방법과는 달리 여기서 제안한 방법은 3D 사면체 도메인에서 벡터필드가 선형적으로 변한다는 가정하에 탄젠트 곡선 상의 정확한 값을 계산한다. 새로 제안한 방법은 벡터필드가 3D 사면체 도메인에서 선형적으로 변한다고 가정한다. 우선 이 방법은 3차원 벡터필드에서 육면체 셀을 5 또는 6개의 사면체 셀로 분해하는 것을 요구한다. 임계점은 각 사면체의 간단한 선형 시스템을 풀어서 간단하게 구할 수 있다. 이 방법은 이전 사면체에서 계산된 탄젠트 곡선상의 점들을 기초로 다음 사면체에서 탄젠트 곡선상의 계속적인 점들을 생성함으로써 출구 점을 구한다. 탄젠트 곡선상의 점들은 각 사면체의 명시해에 의해서 계산되었기 때문에 새로운 방법은 3D 벡터필드를 가시화하는데 정확한 위상을 마련한다.

No-reference Image Blur Assessment Based on Multi-scale Spatial Local Features

  • Sun, Chenchen;Cui, Ziguan;Gan, Zongliang;Liu, Feng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제14권10호
    • /
    • pp.4060-4079
    • /
    • 2020
  • Blur is an important type of image distortion. How to evaluate the quality of blurred image accurately and efficiently is a research hotspot in the field of image processing in recent years. Inspired by the multi-scale perceptual characteristics of the human visual system (HVS), this paper presents a no-reference image blur/sharpness assessment method based on multi-scale local features in the spatial domain. First, considering various content has different sensitivity to blur distortion, the image is divided into smooth, edge, and texture regions in blocks. Then, the Gaussian scale space of the image is constructed, and the categorized contrast features between the original image and the Gaussian scale space images are calculated to express the blur degree of different image contents. To simulate the impact of viewing distance on blur distortion, the distribution characteristics of local maximum gradient of multi-resolution images were also calculated in the spatial domain. Finally, the image blur assessment model is obtained by fusing all features and learning the mapping from features to quality scores by support vector regression (SVR). Performance of the proposed method is evaluated on four synthetically blurred databases and one real blurred database. The experimental results demonstrate that our method can produce quality scores more consistent with subjective evaluations than other methods, especially for real burred images.

System identification of a cable-stayed bridge using vibration responses measured by a wireless sensor network

  • Kim, Jeong-Tae;Ho, Duc-Duy;Nguyen, Khac-Duy;Hong, Dong-Soo;Shin, Sung Woo;Yun, Chung-Bang;Shinozuka, Masanobu
    • Smart Structures and Systems
    • /
    • 제11권5호
    • /
    • pp.533-553
    • /
    • 2013
  • In this paper, system identification of a cable-stayed bridge in Korea, the Hwamyung Bridge, is performed using vibration responses measured by a wireless sensor system. First, an acceleration based-wireless sensor system is employed for the structural health monitoring of the bridge, and wireless sensor nodes are deployed on a deck, a pylon and several selected cables. Second, modal parameters of the bridge are obtained both from measured vibration responses and finite element (FE) analysis. Frequency domain decomposition and stochastic subspace identification methods are used to obtain the modal parameters from the measured vibration responses. The FE model of the bridge is established using commercial FE software package. Third, structural properties of the bridge are updated using a modal sensitivity-based method. The updating work improves the accuracy of the FE model so that structural behaviors of the bridge can be represented better using the updated FE model. Finally, cable forces of the selected cables are also identified and compared with both design and lift-off test values.

Modal identification of Canton Tower under uncertain environmental conditions

  • Ye, Xijun;Yan, Quansheng;Wang, Weifeng;Yu, Xiaolin
    • Smart Structures and Systems
    • /
    • 제10권4_5호
    • /
    • pp.353-373
    • /
    • 2012
  • The instrumented Canton Tower is a 610 m high-rise structure, which has been considered as a benchmark problem for structural health monitoring (SHM) research. In this paper, an improved automatic modal identification method is presented based on a natural excitation technique in conjunction with the eigensystem realization algorithm (NExT/ERA). In the proposed modal identification method, damping ratio, consistent mode indicator from observability matrices (CMI_O) and modal amplitude coherence (MAC) are used as criteria to distinguish the physically true modes from spurious modes. Enhanced frequency domain decomposition (EFDD), the data-driven stochastic subspace identification method (SSI-DATA) and the proposed method are respectively applied to extract the modal parameters of the Canton Tower under different environmental conditions. Results of modal parameter identification based on output-only measurements are presented and discussed. User-selected parameters used in those methods are suggested and discussed. Furthermore, the effect of environmental conditions on the dynamic characteristics of Canton tower is investigated.

A multilevel framework for decomposition-based reliability shape and size optimization

  • Tamijani, Ali Y.;Mulani, Sameer B.;Kapania, Rakesh K.
    • Advances in aircraft and spacecraft science
    • /
    • 제4권4호
    • /
    • pp.467-486
    • /
    • 2017
  • A method for decoupling reliability based design optimization problem into a set of deterministic optimization and performing a reliability analysis is described. The inner reliability analysis and the outer optimization are performed separately in a sequential manner. Since the outer optimizer must perform a large number of iterations to find the optimized shape and size of structure, the computational cost is very high. Therefore, during the course of this research, new multilevel reliability optimization methods are developed that divide the design domain into two sub-spaces to be employed in an iterative procedure: one of the shape design variables, and the other of the size design variables. In each iteration, the probability constraints are converted into equivalent deterministic constraints using reliability analysis and then implemented in the deterministic optimization problem. The framework is first tested on a short column with cross-sectional properties as design variables, the applied loads and the yield stress as random variables. In addition, two cases of curvilinearly stiffened panels subjected to uniform shear and compression in-plane loads, and two cases of curvilinearly stiffened panels subjected to shear and compression loads that vary in linear and quadratic manner are presented.

인력선 프레임의 병렬화 위상 최적설계 (Parallelized Topology Design Optimization of the Frame of Human Powered Vessel)

  • 김현석;이기명;김민근;조선호
    • 대한조선학회논문집
    • /
    • 제47권1호
    • /
    • pp.58-66
    • /
    • 2010
  • Topology design optimization is a method to determine the optimal distribution of material that yields the minimal compliance of structures, satisfying the constraint of allowable material volume. The method is easy to implement and widely used so that it becomes a powerful design tool in various disciplines. In this paper, a large-scale topology design optimization method is developed using the efficient adjoint sensitivity and optimality criteria methods. Parallel computing technique is required for the efficient topology optimization as well as the precise analysis of large-scale problems. Parallelized finite element analysis consists of the domain decomposition and the boundary communication. The preconditioned conjugate gradient method is employed for the analysis of decomposed sub-domains. The developed parallel computing method in topology optimization is utilized to determine the optimal structural layout of human powered vessel.

웨이브렛 변환 영역에서 쿼드트리 기반 적외선 영상 압축 (Quadtree Based Infrared Image Compression in Wavelet Transform Domain)

  • 조창호;이상효
    • 한국통신학회논문지
    • /
    • 제29권3C호
    • /
    • pp.387-397
    • /
    • 2004
  • 영상의 주파수 정보와 공간 정보를 동시에 제공하는 웨이브렛 변환(Wavelet transform)은 영상압축에 매우 효과적임이 밝혀졌고, 최근 들어 웨이브렛 변환 방법으로 다해상도 분해된 영상에 여러 가지 부호화 알고리즘을 적용하는 것에 대해 많은 연구가 진행되고 있다. 본 논문에서는, 웨이브렛 변환으로 다해상도 분해된 적외선 영상에 픽셀간의 상관도와 '0' 정보를 모아 효과적으로 압축할 수 있는 양자화 기법인 쿼드트리 기반 블록 양자화(Quadtree based block quantization)를 적용하여 영상을 압축하는 방법을 제안한파. 웨이브렛 변환된 계수는 스케일간 상잔도가 놀고, 집중도가 높기 때문에 쿼드트리를 적용할 경우 효과적으로 데이터량을 줄일 수 있다. 실험영상으로 256${\times}$256 크기의 8〔bit〕 적외선영상을 이용하고, DCT 압축기법과 제안한 기법을 비교 평가한다.

Finite element model updating of in-filled RC frames with low strength concrete using ambient vibration test

  • Arslan, Mehmet Emin;Durmus, Ahmet
    • Earthquakes and Structures
    • /
    • 제5권1호
    • /
    • pp.111-127
    • /
    • 2013
  • This paper describes effects of infill walls on behavior of RC frame with low strength, including numerical modeling, modal testing and finite-element model updating. For this purpose full scaled, one bay and one story RC frame is produced and tested for plane and brick in-filled conditions. Ambient-vibration testis applied to identify dynamic characteristics under natural excitations. Enhanced Frequency Domain Decomposition and Stochastic Subspace Identification methods are used to obtain experimental dynamic characteristics. A numerical modal analysis is performed on the developed two-dimensional finite element model of the frames using SAP2000 software to provide numerical frequencies and mode shapes. Dynamic characteristics obtained by numerical and experimental are compared with each other and finite element model of the frames are updated by changing some uncertain modeling parameters such as material properties and boundary conditions to reduce the differences between the results. At the end of the study, maximum differences in the natural frequencies are reduced on average from 34% to 9% and a good agreement is found between numerical and experimental dynamic characteristics after finite-element model updating. In addition, it is seen material properties are more effective parameters in the finite element model updating of plane frame. However, for brick in-filled frame changes in boundary conditions determine the model updating process.

Structural identification of concrete arch dams by ambient vibration tests

  • Sevim, Baris;Altunisik, Ahmet Can;Bayraktar, Alemdar
    • Advances in concrete construction
    • /
    • 제1권3호
    • /
    • pp.227-237
    • /
    • 2013
  • Modal testing, widely accepted and applied method for determining the dynamic characteristics of structures for operational conditions, uses known or unknown vibrations in structures. The method's common applications includes estimation of dynamic characteristics and also damage detection and monitoring of structural performance. In this study, the structural identification of concrete arch dams is determined using ambient vibration tests which is one of the modal testing methods. For the purpose, several ambient vibration tests are conducted to an arch dam. Sensitive accelerometers were placed on the different points of the crest and a gallery of the dam, and signals are collected for the process. Enhanced Frequency Domain Decomposition technique is used for the extraction of natural frequencies, mode shapes and damping ratios. A total of eight natural frequencies are attained by experimentally for each test setup, which ranges between 0-12 Hz. The results obtained from each ambient vibration tests are presented and compared with each other in detail. There is a good agreement between the results for all measurements. However, the theoretical fundamental frequency of Berke Arch Dam is a little different from the experimental.