One of the main unresolved issues in large-eddy simulation(LES) of wall-bounded turbulent flows is the requirement of high spatial resolution in the near-wall region, especially in the spanwise direction. Such high resolution required in the near-wall region is generally used throughout the computational domain, making simulations of high Reynolds number, complex-geometry flows prohibitive. A grid-embedding strategy using a nonconforming spectral domain-decomposition method is proposed to address this limitation. This method provides an efficient way of clustering grid points in the near-wall region with spectral accuracy. LES of transitional and turbulent channel flow has been performed to evaluate the proposed grid-embedding technique. The computational domain is divided into three subdomains to resolve the near-wall regions in the spanwise direction. Spectral patching collocation methods are used for the grid-embedding and appropriate conditions are suggested for the interface matching. Results of LES using the grid-embedding strategy are promising compared to LES of global spectral method and direct numerical simulation. Overall, the results show that the spectral domain-decomposition grid-embedding technique provides an efficient method for resolving the near-wall region in LES of complex flows of engineering interest, allowing significant savings in the computational CPU and memory.
A fast Poisson solver on irregular domains, based on bound-ary methods, is presented. The harmonic polynomial approximation of the solution of the associated homogeneous problem provides a good practical boundary method which allows a trivial parallel processing for solution evaluation or straightfoward computations of the interface values for domain decomposition/embedding. AMS Mathematics Subject Classification : 65N35, 65N55, 65Y05.
본 연구에서는 디지털 영상의 블라인드 워터마킹 알고리즘을 제안하였다. 제안한 알고리즘은 웨이블릿 평면에서 처리되는 변환 평면 워터마킹 알고리즘으로서 2차원 EMD을 이용하여 분해된 워터마크의 EMF 성분들이 웨이블릿 대역에 삽입되어, 각 웨이블릿 대역은 워터마크의 일부 정보만을 포함하고 있는 것을 특징으로 하고 있다. 워터마크의 추출은 각 웨이블릿 대역에서 추출한 워터마크의 일부 정보들을 2차원 EMD의 선형적인 특징에 의해 산술적 또는 논리적 연산을 통하여 회복할 수 있도록 하였다. 개발한 워터마킹 알고리즘은 비가시성, 강인성 등 워터마킹 알고리즘에서 요구되는 조건들에 대한 실험을 수행하여 성능을 비교 분석하였다.
Input filtering as a preprocessing method is so much crucial to get good performance in time series forecasting. There are a few preprocessing methods (i.e. ARMA outputs as time domain filters, and Fourier transform or wavelet transform as time-frequency domain filters) for handling time series. Specially, the time-frequency domain filters describe the fractal structure of financial markets better than the time domain filters due to theoretically additional frequency information. Therefore, we, first of all, try to describe and analyze specially some issues on the effectiveness of different filtering methods from viewpoint of the performance of a neural network based forecasting. And then we discuss about neural network model architecture issues, for example, what type of neural network learning architecture is selected for our time series forecasting, and what input size should be applied to a model. In this study an input selection problem is limited to a size selection of the lagged input variables. To solve this problem, we simulate on analyzing and comparing a few neural networks having different model architecture and also use an embedding dimension measure as chaotic time series analysis or nonlinear dynamic analysis to reduce the dimensionality (i.e. the size of time delayed input variables) of the models. Throughout our study, experiments for integration methods of joint time-frequency analysis and neural network techniques are applied to a case study of daily Korean won / U. S dollar exchange returns and finally we suggest an integration framework for future research from our experimental results.
KSII Transactions on Internet and Information Systems (TIIS)
/
제16권12호
/
pp.4024-4041
/
2022
Robust reversible watermarking has attracted widespread attention in the field of information hiding in recent years. It should not only have robustness against attacks in transmission but also meet the reversibility of distortion-free transmission. According to our best knowledge, the most recent robust reversible watermarking methods adopt a single image as the carrier, which might lead to low efficiency in terms of carrier utilization. To address the issue, a novel dual-image robust reversible watermarking framework is proposed in this paper to effectively utilize the correlation between both carriers (namely dual images) and thus improve the efficiency of carrier utilization. In the dual-image robust reversible watermarking framework, a two-layer robust watermarking mechanism is designed to further improve the algorithm performances, i.e., embedding capacity and robustness. In addition, an optimization model is built to determine the parameters. Finally, the proposed framework is applied in different domains (namely domain-independent), i.e., Slantlet Transform and Singular Value Decomposition domain, and Zernike moments, respectively to demonstrate its effectiveness and generality. Experimental results demonstrate the superiority of the proposed dual-image robust reversible watermarking framework.
본 논문은 다단계 불법유통 추적을 위하여 배포단계 마다 포렌식마크를 삽입하고 불법 유통시 삽입된 포렌식마크를 검출하여 유통경로 추적이 가능하도록 하는 방식을 제안한다. 단계마다 저작권 및 사용자 정보를 포함한 포렌식마크를 삽입해야 하므로 대용량의 정보 삽입이 필요하고, 또 단계마다 삽입된 정보들 사이에 신호간섭이 발생하지 않도록 하여야 정확한 검출이 가능하다. 제안방식은 포렌식마크로부터 디지털 홀로그램을 생성하여 DWT-SVD 도메인에 삽입하는 방식으로 다단계 불법유통 추적이 가능하도록 구성하였다. 대용량 정보 삽입을 구현하기 위하여 포렌식마크로부터 비축홀로그램(Off-axis Hologram)을 생성하고 단계별 유통추적이 가능하도록 홀로그램을 DWT(Discrete Wavelet Transform)도메인의 HL, LH, HH band에 삽입하여 신호간섭을 줄였다. 또 SVD(Singular Value Decomposition)를 홀로그램이 삽입된 신호에 적용하여 단계별 검출성능 및 안전성을 향상시켰다. 실험결과 각 단계별로 저작권 정보 및 사용자 정보로 활용이 가능한 128bit의 포렌식마크 삽입이 가능하여 3단계 배포에 총 384bit를 삽입하고 단계별로 정확한 검출이 이루어졌으며 JPEG압축에도 강인한 것으로 나타났다.
최근 딥 러닝 기술의 발전으로 뉴스, 블로그 등 다양한 문서에 포함된 텍스트 분석에 딥 러닝 기술을 활용하는 연구가 활발하게 수행되고 있다. 다양한 텍스트 분석 응용 가운데, 텍스트 분류는 학계와 업계에서 가장 많이 활용되는 대표적인 기술이다. 텍스트 분류의 활용 예로는 정답 레이블이 하나만 존재하는 이진 클래스 분류와 다중 클래스 분류, 그리고 정답 레이블이 여러 개 존재하는 다중 레이블 분류 등이 있다. 특히, 다중 레이블 분류는 여러 개의 정답 레이블이 존재한다는 특성 때문에 일반적인 분류와는 상이한 학습 방법이 요구된다. 또한, 다중 레이블 분류 문제는 레이블과 클래스의 개수가 증가할수록 예측의 난이도가 상승한다는 측면에서 데이터 과학 분야의 난제로 여겨지고 있다. 따라서 이를 해결하기 위해 다수의 레이블을 압축한 후 압축된 레이블을 예측하고, 예측된 압축 레이블을 원래 레이블로 복원하는 레이블 임베딩이 많이 활용되고 있다. 대표적으로 딥 러닝 모델인 오토인코더 기반 레이블 임베딩이 이러한 목적으로 사용되고 있지만, 이러한 기법은 클래스의 수가 무수히 많은 고차원 레이블 공간을 저차원 잠재 레이블 공간으로 압축할 때 많은 정보 손실을 야기한다는 한계가 있다. 이에 본 연구에서는 오토인코더의 인코더와 디코더 각각에 스킵 연결을 추가하여, 고차원 레이블 공간의 압축 과정에서 정보 손실을 최소화할 수 있는 레이블 임베딩 방법을 제안한다. 또한 학술연구정보서비스인 'RISS'에서 수집한 학술논문 4,675건에 대해 각 논문의 초록으로부터 해당 논문의 다중 키워드를 예측하는 실험을 수행한 결과, 제안 방법론이 기존의 일반 오토인코더 기반 레이블 임베딩 기법에 비해 정확도, 정밀도, 재현율, 그리고 F1 점수 등 모든 측면에서 우수한 성능을 나타냄을 확인하였다.
본 논문에서는 특이치 분해를 이용한 워터마크 기법을 제안하였다. 워터마킹의 단계는 먼저 웨이블릿 변환에 의한 저해상도 LL대역의 영상을 3${\times}$3 블록단위로 나누고, 엔트로피와 조건수를 기준으로 선택한 블록을 특이치 분해하여 워터마크를 삽입하는 것이다. 이는 워터마크 추출을 안정적으로 수행할 수 있는 저 대역 워터마크 삽입기법을 제공한다. 본 논문에서 워터마크를 효율적으로 추출하기 위해 영상에 가해진 공격을 국소적으로 모델링하여 공격연산자를 근사적으로 구하고, 워터마크 삽입 시 수행된 특이치 분해와 추정된 공격연산자를 적용하여 삽입위치에 따라 워터마크 집단을 결정한다. 각 워터마크 집단 내에서 최적의 워터마크를 구하고 T검정을 이용하여 워터마크의 유무를 검정한다. 제안된 워터마크 기법이 여러 단계 JEPG 공격에 견고하다는 것을 수치실험에서 확인하였다.
본 연구에서는 분자동역학 전산모사와 이중 입자 모델을 이용하여 질화붕소 나노튜브-폴리메틸메타크릴레이트 나노복합재의 기계적 물성과 계면특성을 규명하였다. 단일 벽 나노튜브가 고분자 기지에 함침된 가로등방성 나노복합재 단위 셀 구조를 모델링한 후, 각 방향으로의 일축인장 및 전단 전산모사를 통해 나노복합재의 강성행렬을 예측하였다. 또한 강성행렬의 방향 평균을 취해 나노튜브가 기지 내에 랜덤 분포하는 경우의 등방성 탄성계수를 도출하였다. 분자동역학 해석 결과를 계면의 완전 결합을 가정한 이중 입자 모델 예측해와 비교한 결과, 질화붕소 나노튜브와 고분자 기지간의 계면이 불완전한 것으로 확인되었다. 나노튜브 주위에 형성되는 흡착계면의 물성을 예측하기 위해 2단계 영역 분할 기법을 도입하였고 계면의 불완전 결합을 선형 스프링으로 묘사하였다. 그 결과 다양한 스프링 컴플라이언스 값에 따른 흡착계면의 물성을 역 해석을 통해 확인할 수 있었다.
멀티미디어 정보들이 인터넷 공간에 확산됨에 따라서 원래 정보 소유자의 권리 보호와 원본 증명 등의 문제가 대두되고 있다. DCT, DFT, DWT 등의 여러 영상 변환들을 이용하여 소유권의 징표로 워터마크를 원본 영상에 삽입하는 방법을 많이 사용하였으나, 보다 최근에는 수치해석 분야에 많이 쓰이는 SVD(Singular Value Decomposition) 방법을 부가적으로 사용하고 있다. 본 논문에서는 SVD의 특이 벡터와 동시에 Gabor 코사인과 사인 변환을 이용하여 디지털 표지 영상에 워터마크를 삽입하고 추출하는 방법을 제안한다. 워터마크가 삽입된 영상에 잡음, 공간 변형, 필터링, 압축 등의 공격을 가한 후, GCST-SVD의 워터마크 추출 알고리즘을 적용한다. 워터마킹 성능을 평가하기 위해서 삽입한 워터마크와 추출한 워터마크 사이의 유사성 척도로써 정규화한 상관계수값을 측정한다. 또한 추출한 워터마크 영상으로부터 시각적으로 직접 원본 워터마크인지를 판단한다. 가장 낮은 수직 교류 주파수 대역에 워터마크를 삽입한 실험으로부터 SVD의 특이 벡터를 이용한 워터마킹 방법은 대부분 공격에서 0.9이상의 큰 상관값과 삽입한 워터마크의 특징들을 시각적으로 파악할 수 있었다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.