문서 필터링은 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 증가하고 있는 추세이다. 본 논문은 문서 필터링 문제를 이진 문서 분류 문제로 보고, 베이지안 분류기를 필터링 목적으로 사용하였다. 그리고 사용자가 관련성 있는 문서를 제대로 필터링 받기 위해서 학습 대상으로 삼아야 할 문서의 범위나 수, 최소한 체크해야 하는 관련성 있는 문서의 수에 대한 값을 구하는 실험을 수행하였다.
색인전문가에 의해 분류된 웹문서들을 통계적 자질 선택방법으로 자질을 추출하여 클라스터링을 해 보면, 자질 선택에 사용된 데이터셋에 따라 성능과 결과가 다르게 나타난다. 그 이유는 많은 웹 문서에서 문서의 내용과 관계없는 단어들을 많이 포함하고 있어 문서의 특정을 나타내는 단어들이 상대적으로 잘 두드러지지 않기 때문이다. 따라서 클러스터링 성능을 향상시키기 위해 이런 부적절한 자질들을 제거해 주어야 한다. 따라서 본 논문에서는 자질 선택에서 자질의 문서군별 자질값뿐만 아니라, 문서군별 자질값의 분포와 정도, 자질의 출현여부와 빈도를 고려한 자질 필터링 알고리즘을 제시한다. 알고리즘에는 (1) 단위 문서 내 자질 필터링 알고리즘(FFID : feature filtering algorithm in a document), (2) 전체 데이터셋 내 자질 필터링 알고리즘(FFIM : feature filtering algorithm in a document matrix), (3)FFID와 FFIM을 결합한 방법(HFF:a hybrid method combining both FFID and FFIM) 을 제시한다. 실험은 단어반도를 이용한 자질선택 방법, 문서간 동시-링크 정보의 자질확장, 그리고 위에서 제시한 3가지 자질 필터링 방법을 사용하여 클러스터링 했다. 실험 결과는 데이터셋에 따라 조금씩 차이가 나지만, FFID보다 FFIM의 성능이 좋았고, 또 FFID와 FFIM을 결합한 HFF 결과가 더 나은 성능을 보였다.
자질 수가 적은 소규모 크기 문서들의 자동분류는 좋은 성능을 얻기 어렵다. 그 이유는 문서집단 전체의 자질 수는 크지만 단위 문서 내 자질 수가 상대적으로 너무 적기 때문에 문서간 유사도가 너무 낮아 우수한 분류 알고리즘을 적용해도 좋은 성능을 얻지 못한다. 특히 웹 디렉토리 문서들의 자동분류에서나, 디스크 복구 작업에서 유사도 평가와 자동분류로 연결되지 않은 섹터를 연결하는 작업에서와 같은 소규모 크기 문서의 자동분류에서는 좋은 성능을 얻지 못한다. 따라서 본 논문에서는 소규모 크기 문서의 자동분류에서의 문제점을 해결하기 위해 분류 사전작업으로, 예제기반 자질 필터링 방법 Relief-F알고리즘을 소규모 문서 내 자질 필터링에 적합한 ERelief-F 알고리즘을 제시한다. 또 비교 실험을 위해, 기존의 자질 필터링 방법 중 Odds Ratio와 정보이득, 또 Relief-F 알고리즘을 함께 실험하여 분류결과를 비교하였다. 그 결과, ERelief-F 알고리즘을 사용했을 때의 결과가 정보이득과 Odds Ratio, Relief-F보다 월등히 우수한 성능을 보였고 부적절한 자질도 많이 줄일 수 있었다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제9권3호
/
pp.161-165
/
2009
Increase of multimedia information in Web requires a new method to manage and service multimedia documents efficiently. This paper proposes a conceptual object grouping method by fuzzy filtering, which is automatically constituted based on increase of multimedia documents. The proposed method composes subsumption relations between conceptual objects automatically using fuzzy filtering of the document objects that are extracted from domains. Grouping of such conceptual objects is regarded as subsumption relation which is decided by $\mu$-cut. This paper proposes $\mu$-cut, FAS(Fuzzy Average Similarity) and DSR(Direct Subsumption Relation) to decide fuzzy filtering, which groups related document objects easily. This paper used about 1,000 conceptual objects in the performance test of the proposed method. The simulation result showed that the proposed method had better retrieval performance than those for OGM(Optimistic Genealogy Method) and BGM(Balanced Genealogy Method).
Extractive document summarization aims to select a few sentences while preserving its main information on a given document, but the current extractive methods do not consider the sentence-information repeat problem especially for news document summarization. In view of the importance and redundancy of news text information, in this paper, we propose a neural extractive summarization approach with joint sentence semantic clipping and selection, which can effectively solve the problem of news text summary sentence repetition. Specifically, a hierarchical selective encoding network is constructed for both sentence-level and document-level document representations, and data containing important information is extracted on news text; a sentence extractor strategy is then adopted for joint scoring and redundant information clipping. This way, our model strikes a balance between important information extraction and redundant information filtering. Experimental results on both CNN/Daily Mail dataset and Court Public Opinion News dataset we built are presented to show the effectiveness of our proposed approach in terms of ROUGE metrics, especially for redundant information filtering.
협력적 여과 시스템은 {사용자-문서}의 행렬을 기반으로 사용자에게 웹 문서를 추천하는 데 있어서 효율적인 시스템이다. 그러나 협력적 여과 시스템은 초기 평가 문제와 희박성으로 인하여 추천의 정확도가 저하된다는 단점을 갖는다. 본 논문에서는 협력적 여과 시스템의 희박성과 초기 평가 문제를 해결하기 위하여 사용자 프로파일을 생성시킴으로써 자동으로 선호도를 평가하는 방법을 제안한다. 본 논문에서 사용하는 프로파일은 협력적 여과 시스템에서의 {사용자-문서} 행렬을 기반으로 생성된 사용자 프로파일에 내용 기반 여과 시스템에서 연관 피드백을 이용하여 생성한 사용자 프로파일을 상호정보의 방법에 의해 병합함으로써 생성한 내용 기반 협력적 사용자 프로파일이다. 생성한 내용 기반 협력적 사용자 프로파일을 정규화시키고, 정규화한 프로파일을 협력적 여과 시스템의 {사용자-문서} 행렬에 반영함으로써 자동으로 선호도를 평가한다. 제안된 방법은 사용자가 웹 문서에 대해서 선호도를 평가한 데이터베이스에서 평가되었으며, 기존의 방법보다 보다 효율적임을 증명한다.
문서 여과 문제 (text filtering)는 어떤 문서가 특정한 주제에 속하는지의 여부를 판별하는 문제이다. 인터넷과 웹이 널리 퍼지고 이메일로 전송되는 문서의 양이 폭발적으로 증가함에 따라 문서 여과의 중요성도 따라서 증가하고 있는 추세이다. 이 논문에서는 새로운 학습 방법인 에이다부스트 학습 방법을 문서 여과 문제에 적용하여 기존의 방법들보다 우수한 분류 결과를 나타내는 문서 여과 시스템을 생성하고자 한다. 에이다 부스트는 간단한 가설의 집합을 생성하고 묶는 기법인데, 이 때 각각의 가설들은 문서가 특정 단어를 포함하고 있는지 검사하여 이에 따라 문서의 적합성을 판별한다. 먼저 최종 여과 시스템을 구성하는 각 가설의 출력이 1 또는 -1이 되는 이진 가설을 사용하는 기존의 에이다부스트 알고리즘에서 출발하여 좀 더 최근에 제안된 확신 정도 (실수값)를 출력하는 가설을 이용하는 에이다부스트 알고리즘을 적용함으로써 오류 감소 속도와 최종 오류율을 개선하고자 하였다. 또 각 데이타에 대한 초기 가중치를 연속 포아송 분포에 따라 임의로 부여하여 여러 번의 부스팅을 수행한 후 그 결과를 결합하는 방법을 사용함으로써 적은 학습 데이타로 인해 발생하는 과도학습의 문제를 완화하고자 하였다. 실험 데이터로는 TREC-8 필터링 트랙 데이타셋을 사용하였다. 이 데이타셋은 1992년도부터 1994년도 사이의 파이낸셜 타임스 기사로 이루어져 있다. 실험 결과, 실수값을 출력하는 가설을 사용했을 때 이진값을 갖는 가설을 사용했을 때 보다 좋은 결과를 보였고 임의 가중치를 사용하여 여러번 부스팅을 하는 방법이 더욱 향상된 성능을 나타내었다. 다른 TREC 참가자들과의 비교결과도 제시한다.
최근 XML 문서 필터링에 기반한 출판 -구독 (publish-subscribe) 시스템이 많은 관심을 받고 있다. 전형적인 출판 구독 시스템에서, 구독자들은 XPath 언어로 명세된 프로파일로 자신들의 관심을 표현하고, 새로운 내용들은 사용자 프로파일에 대하여 매칭 여부를 판단하여 관심을 가지고 있는 사용자들에게만 배달된다. 구독자의 수와 그들의 프로파일이 증가할수록, 시스템의 확장성이 출판 구독 시스템의 중요한 성공 요소가 된다. 이 논문에서는 XPath 로 명세된 가지형 패턴과 입력 XML 문서들을 Prufer의 방법을 사용하여 시퀀스로 변환하는 FiST라 불라는 새로운 필터링 시스템을 제안한다. FiST 시스템은 가지형 패턴을 구성하는 선형 경로들에 대하여 각각 매칭을 수행하고 후처리 과정에서 그 결과들을 병합하는 방법을 이용하는 대신에 가지형 패턴 전체를 사용하여 입력 문서에 대하여 매칭을 수행한다. 또한 효율적인 필터링을 위하여 시퀀스들을 해시 기반의 동적 인덱스로 구성한다. 실험 결과를 통해 전체 매칭 접근 방법이 다양한 환경에서 낮은 필터링 비용과 좋은 확장성을 가짐을 알 수 있다.
Much information has been hierarchically organized to facilitate information browsing, retrieval, and dissemination. In practice, much information may be entered at any time, but only a small subset of the information may be classified into some categories in a hierarchy. Therefore, achieving document filtering (DF) in the course of document classification (DC) is an essential basis to develop an information center, which classifies suitable documents into suitable categories, reducing information overload while facilitating information sharing. In this paper, we present a technique ICenter, which conducts DF and DC by recognizing the context of discussion (COD) of each document and category. Experiments on real-world data show that, through COD recognition, the performance of ICenter is significantly better. The results are of theoretical and practical significance. ICenter may server as an essential basis to develop an information center for a user community, which shares and organizes a hierarchy of textual information.
인터넷을 비롯한 대다수의 정보검색에서 사용자가 느끼는 공통된 어려움중의 하나는 검색결과가 너무 많다는 것이다. 본 연구는 검색결과를 줄이는 방법의 하나로써 검색 문헌에 대한 정제 방법에 대하여 논의한 것이다. 궁극적으로 종전의 검색시스템에서 제대로 고려하지 않은 개념망을 통한 질의어 확장과 확장 질의어와 전처리된 문서와의 유사도 측정을 통한 문서의 선택, 백과사전 정보에 의한 의미 확장과 클러스터링, 필터링 기법 등이 정보검색의 효율을 향상시키는데 효과적인 방안임을 제안한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.