International Journal of Kais. Special Edition December 2005

Frameworks for Context Recognition in Document Filtering and Classification

Haeng-Kon Kim
Dept. of Computer Information & Communication
Engineering, Catholic University of Deagu, Korea
Hae-Sool Yang
Hoseo Graduate School of Venture, Korea

Abstract

Much information has been hierarchically organized to
facilitate information browsing, retrieval, and dissemination.
In practice, much information may be entered at any time, but
only a small subset of the information may be classified into
some categories in a hierarchy. Therefore, achieving
document filtering (DF) in the course of document
classification (DC) is an essential basis to develop an
information center, which classifies suitable documents into
suitable categories, reducing information overload while
Jacilitating information sharing. In this paper, we present a
technique ICenter, which conducts DF and DC by recognizing
the context of discussion (COD) of each document and
category. Experiments on real-world data show that, through
COD recognition, the performance of ICenter is significantly
better. The results are of theoretical and practical
significance. ICenter may server as an essential basis to
develop an information center for a user community, which
shares and organizes a hierarchy of textual information.

1. Introduction

Information is often organized into text hierarchies to
facilitate information browsing, dissemination, and retrieval. In
practice, a text hierarchy is often designed for a specific
application, and hence lots of documents in the real world may
be entered at any time, but only a small subset of the
documents may be classified into some categories in the
hierarchy. Therefore, document filtering (DF) and document
classification (DC) should be integrated together to classify
suitable documents into suitable categories. It aims to reduce
information overload while facilitating information sharing. A
document is suitable for a hierarchy if the hierarchy contains at
least on category that shares enough semantics with the
document. Only suitable documents are classified into suitable
categories. Unsuitable documents should be filtered out of the
hierarchy.

This work supported by the MIC, Korea under the ITRC
support program supervised by the IITA.

-82-

In this paper, we explore how the recognition of the context
of discussion (COD) of each document and category may
contribute to integrated DF and DC in a text hierarchy. We
present a technique ICenter, which employs COD recognition
to conduct integrated DF and DC. The basic rationale is: a
document could be classified into a category only if its COD
matches the category’s COD, which depends on the profiles of
the category’s ancestors. For example, suppose a text hierarchy
contains two categories about decision support systems (DSS):
(1) “Root — Manufacturing Management — DSS”, and (2)

- “Root — Financial Management — DSS”. If a document talks

about DSS and its COD is about the usage of DSS in
manufacturing (finance), it should be classified into the first
(second) category; otherwise it should be filtered out, no
matter how and to what extent it talks about DSS,
manufacturing, and finance, individually. This is the main
contribution of the paper.

2. Related work

Table 1 contrasts ICenter with related work. ICenter
conducts hierarchical DC, which was a main branch of DC
studies. Previous studies developed several hierarchical
classifiers [4; 7; 5]. However, DF was not a main
functionality of the classifiers, since they were often
designed to classify each document into some categories.
Moreover, COD recognition was not employed by the
classifiers to perform DC either.

ICenter aims to achieve DF and DC by COD recognition.
There were studies relying on term contexts to classify
documents (e.g. neighboring word strings or linguistic
phrases surrounding the terms of interest [3; 8]). These term
contexts were quite different from discussion contexts (i.e.
COD), which are parts of the semantic contents embedded in
documents and categories. There were also studies
employing COD recognition to classify queries into most-
possible categories [6]. However, the classifiers did not
consider DF. When there are many documents not suitable
for any category, such a design may classify many unsuitable
documents into the hierarchy. In that case, the integration of
DF and DC is a must, which calls for significant revisions to

the classifier.

Table 1. Contrasting ICenter with related work

Methodology DC | DF | COD recognition

ICenter O

Hierarchical DC

COD-based
hierarchical DC

Non-hierarchical DC
with thresholding

o | © |00
O | X [X|C

X
0]
X

To conduct integrated DF and DC, previous studies often
employed shareholding. Each category was associated with a
threshold to autonomously make a yes-no decision for each
document entered. A document was “rejected” by a category
if its degree of acceptance (DOA) with respect to the
category (e.g. similarity with the category or probability of
belonging to the category) was lower than the category’s
threshold; otherwise it was “accepted”. When all categories
rejected the document, the document was filtered out of the
hierarchy.

Obviously, the performance of such classifiers heavily
depends on the setting of the thresholds. Previous studies
developed two types of thresholds: absolute thresholds and
relative thresholds. Absolute thresholds were manually
predefined without considering the DOA values of multiple
documents (e.g. a Bayesian classifier could accept a
document using a probability threshold of 0.5 [2]). On the
other hand, relative thresholds were often tuned by
performing some statistical analysis on the DOA values of a
set of documents (e.g. training documents [2] and validation
documents [12]). The thresholds were thus relative to the
DOA values of the documents. By analyzing DOA
distribution of the documents, the thresholds could be tuned
in the hope to optimize the system’s performance [2; 9; 10;
12; 14)).

However, both types of thresholds have weaknesses.
Absolute thresholds are quite difficult (and even
implausible) to predefine properly. On the other hand, as
noted above, relative thresholds are derived based on DOA
estimations of some documents. The estimations could not
be perfect either [1; 14], producing noises to incur improper
thresholds.

ICenter employs COD recognition to tackle the
weaknesses by employing COD recognition to provide more
reliable DOA estimations to make DF and DC decisions. To
achieve the mission, previous COD-based classifiers (e.g.
[6]) require significant modifications, due to two reasons: (1)
previous COD recognition techniques is not suitable for
performing DF, since a document may be classified into a
category only if its COD matches the category’s context at
each level of generality (rather than considering the average
matching degree at multiple levels, as done by previous
COD-based classifiers whose goal was to perform DC by

-83 -

International Journal of Kais. Special Edition December 2005

identifying the most possible category for the document),
and (2) previous thresholding techniques cannot be suitable
for the classifiers to derive COD thresholds, since a
category’s COD threshold should be tuned by considering
both the category and ancestors of the category (rather than
considering the category only, as done by previous
thresholding techniques).

SeERERRCERASEROI ST EREINY

Profile
<" Mining ™.

Training

-

*» Training

¥
»

-
-

Category *

O S

______ » Threshold i.--" Documents
Profiles *, Tuning &
N v Category
* X « .-~ Thresholds

Y) -
i Filtering & &f

Incoming
...... » s e .
Document s : Classification .
Brennrronans [+ Testing
» Ta
Classified Filtered
Document s Document s

Figure 1. Process flow of ICenter

3. Context recognition for filtering and classification

Figure 1 outlines the process flow of ICenter, which
consists of three components: a profile miner, a COD
threshold tuner, and a filtering classifier. The former two
components are triggered in the training phase, while the
third component is triggered once a document is entered.
The profile miner identifies content-indicative and
generality-indicative features for each category. Based on the
profiles mined, the COD threshold tuner estimates the DOA
values of all training documents, and accordingly tunes a
threshold for each category under the root. Once a document
is entered to the system, the filtering classifier consults the
profiles and the thresholds to make DF and DC decisions.
Next three subsections introduce the three components.

3.1. The profile miner

Table 2 outlines the profile miner. Each category under
the root of the hierarchy has a profile. The profile of a
category X is a set of 3-tuples <w, 8,4, gwx>, Where w is a
term serving as a profile term (a feature) for x, s, is the
support of w under x (i.e. including x and its descendents),
and g, is the strength of w in distinguishing x from
siblings of x. That is, s, xand g, consider the distributions
of w under x and siblings of x, respectively. A term w is
likely to be a good profile term for a category x if (1) it

International Journal of Kais. Special Edition December 2005

occurs frequently under x (i.e. sy, is higher), and (2) it

occurs relatively infrequently under siblings of x (i.e. gwx

is higher).

Table 2. Mining category profiles

general to serve as a good profile term for CBIS (but not
for ancestors and descendants of CBIS), and hence may be
a good COD indicator for its child categories (i.e. DSS and

MIS).

text hierarchy.

of c.
Begin
(1) Fore each child category x of ¢, do
(1.1) Px=g¢
(1.2)

(1.3)

and w is not a stop word};

For each word w in W, do
(1.3.1) swx=P(w[x);
(1.3.2)

X; is the i™ child of ¢, 1<i<B,;
(1.3.3) P=PU{<W, Sux8ws"};
a4 If x

of each descendant category of x;

End.

Procedure: ProfileMining(c), where c is a category in the

Effect: Build the profile P, of each descendant category x

W={wlw is a word in documents under X,

gwx=P(W|x) x (B,/Y.iP(w|xi)), where
B, = 1+number of siblings of x, and

is not a leaf category, recursively
invoke ProfileMining(x) to build the profile

Table 3. Tuning COD thresholds

More specially, sy, is estimated by P(w[x) (ref Step
1.3.1), which is equal to TF(w,x) / Size(x), where TF(w,x)
is the times of occurrences of w in documents under x (i.e.
the documents in x and all descendants of x), and Size(x) is
the total number of terms occurring in the documents under
X. On the other hand, g,y is estimated by P(w[x) x
(B./3iP(w|x;)) (ref. Step 1.3.2), where By is one plus the
number of siblings of x (i.e. the summation of P(wlx;) is
conducted over x and its siblings). Thus, for example, w
may get a higher g,,, if its support under x (i.e. P(w[x)) is
higher than its average support under x and siblings of x
(Le. Y;P(wx;)/B,). In that case, w may be good in
distinguishing x from siblings of x. Obviously, 0 < g,,,<B,,
0 for
each sibling b of x. If P (w|x) » Y;P(w|x)/Bx (i.e. average

and when w only occurs in X, gux = By and gy =

P(W|X))), 8uwx > 1; otherwise gy < 1.

Procedure: CODThresholdTuning(x), where x is a leaf
category in the text hierarchy.

Effect : (1) For each ancestor a of x, tune a COD
threshold h, ,, and
(2) Tune a COD threshold h, , for x.
Begin

(1) P={P|P is a document belonging to x};
(2) For each ancestor category a of x, do
(2.1) UB=Min{DOA,,}, where p € P, and
DOA,, is the DOA value of p with respect
to a;
(2.2)h, ,=Max{DOA,, .}, where n is a document
not belonging to a, and DOA,, ,< UB;
(3) Q={dq|q is a document not belonging to x};
(4) ForeachqinQ, do
(4.1) For each ancestor a of x
(4.1.DIF DOAy, <hax,Q=Q-{q};
(5) h,, = DOAp.x, which maximizes the system’s
performance on P and Q (p€P);
End.

Note that a term’s g-value may reflect the generality of

the term in the hierarchy. A general (specific) term tends to
have a higher (lower) g-value in general (specific)
hierarchy
contains two categories: (1) “Root — Computer-Based
Information System (CBIS) — Decision Support Systems
“Root — CBIS — Management
Information Systems (MIS)”. The term “computer” may
have a higher s-value but a lower g-value in MIS and DSS,
since it occurs frequently in both categories. However,
both its s-value and g-value may be high in the parent (i.e.
CBIS), if siblings of CBIS are not about computer systems.
The term “computer” may thus be both representative and

categories. Forexample, suppose the text

(DSS)” and (2)

-84 -

3.2. The COD threshold tuner

Table 3 depicts the COD threshold tuner. To derive the
thresholds for a leaf category x and its ancestors (for
governing the COD of x), ICenter invokes
CODThresholdTuning(x). The basic idea is that the
thresholds for the ancestors should reflect the minimum
DOA values of those documents that may be classified into
X.

More specially, for an ancestor a of a leaf category x, its
threshold is set to make all training documents belonging
to x able to pass the test of a (ref. Steps 2.1 and 2.2).
Obviously, there might still be documents not belonging to
x but able to pass all the tests of the ancestors of x. Let Q
be the set of these documents (ref. Steps 3 and 4). To tune
a threshold for x, the set Q and the set of those documents
really belonging to x (i.e. P in Step 1) are used (ref. Step
5). The threshold is simply the DOA value of a document
in P that may maximize the system’s performance in a
given criterion (e.g. the F-measure).

The contribution of basing thresholding on the set Q
deserves discussion. COD recognition helps to produce Q,
which excludes those documents that cannot pass the tests
of the ancestors. Thresholding may thus be more reliable,
since these documents should be noises for thresholding.

Table 4. Estimating DOA values of a document

Procedure: DOAEstimation(d), where d is a document.
Effect: For each category c, estimate DOA, ., which is the
DOA value of d with respect to c.
Begin
(1) For each category c,
(2) For each distinct word w in d, do
(2.1) For each category ¢, do
(2.1.1) IF w s a profile term for ¢ and gw.c>1,
(2.1.1.1) ng,..={(gu. -1)/(# siblings of c);
(2.1.1.2) rw.c = DFw.c/DFw.root;
(2.1.1.3) HitScorew.c = S, X Ng, X Iy X
tSw.ds
(2.1.14) DOAy.—DOA . + HitScorey;
End.

International Journal of Kais. Special Edition December 2005

tests of c and ¢’ s ancestors under the root. The test of ¢ is
for matching the contents of ¢ and d, while the tests of the
ancestors are for matching the COD of c and d.

Table 5. Achieving DF and DC by COD recognition

The estimation of the DOA values deserves elaboration
as well. Table 4 defines the algorithm for the DOA
estimation. The DOA value of a document d with respect
to a category ¢ (i.e. DOAy,) is the summation of the hit
scores of the qualified terms (in d) on ¢ (ref. Step 2.1.1.4).
Aterm w in d may be qualified to have a hit score on ¢ (i.e.
HitScore,,) if it is a profile term for ¢ and g, > 1 (ref.
Step 2.1.1, also recall that, in this case, w is good in
distinguishing ¢ from its siblings).

More specially, the contribution of w to DOA,. may be
more significant if (1) w is content-indicative for c, (2) w
is generality-indicative for c, 93) w is strongly correlated
with ¢, and (4) w is content-indicative for d. Therefore,
HitScore,, is equal to Sy X Ngy. X Ty X ts,gq (ref. Step
2.1.1.3), where ng,. is normalized form g,. The
normalization is for maintaining the same scale for DOA
estimation across different categories. As noted above, for
any term w and any category c, 0 < g, < B,, weher B, is
one plus the number of c’s siblings. The closer g, is to
Bc, the more discriminative w would be. Therefore, g, is
normalized into ng,. ranging form 0 to 1 (ref. Step
2.1.1.1). On the other hand, r,. is estimated by
DF,,/DF, oo, Where DF,, is the document Frequency of
w (i.e. number of documents having w) under category X,
and root is the root of the text hierarchy (ref. Step 2.1.1.2).
Obviously, 0<r,<1. If all documents containing w are
under ¢, Ty, is equal to 1. Finally, ts,, 4 is simply {the times
w in d/ total number of terms in d].

3.3. The filtering classifier

Based on the profiles mined and the thresholds tuned,
context recognition may be conducted for DF and DC.
Table 5 defines the algorithm of the filtering classifier.
Given a document d, the filtering classifier returns a set of
categories to which d may be classified. If the set is empty,
d is actually filtered out of the hierarchy. The basic idea is:
d may be classified into a category c only if it may pass the

-85-

Procedure: DOAEstimation (d), where d is a document.
Effect: DF&DC (d), where d is a document.
Return: A set S of categories to which d is classified.
Begin
(1) Invoke DOAEstimation(d) to estimate DOAd.c,
for each category c;
(2) S=g;
(3) For each leaf category x, do
(3.1) IsAccepted = true;
(3.2) For each ancestor a of x, do
(3.2.1) IF DOA4:<h,
(3.2.1.1) IsAccepted = false;
(3.2.1.2) Exit the for-loop;
(3.3) IF IsAccepted = true,
(3.3.1) IfDOA4, <hx.x,
(3.3.1.1) IsAccepted = false;
(4) IF IsAccepted = true,
(4.1)S=SU {x};
(5) Return S;
End.

4. Experiment

Experiments on real-world data were conducted to evaluate
the contributions of ICenter.

4.1. The Environment

To facilitate objective evaluation and cross-validation,
experimental data was extracted from a public database of
Yahoo (http://www.yahoo.com). We extracted categories under
5 first-level categories: “science,” “computers and Internet,”
“society and culture,” “business and economy,” and
“Government”. The text hierarchy contained 507 categories
among which there were 211 leaf categories, which totally
contained 3612 documents. Its height was 8.

The amount and distribution of the documents deserve
discussion. In the hierarchy, the largest(smallest) leaf
categories contained 150(3) documents. Actually the problem
of sparse and skewed data was often identified as a practical
problem [14; 7]. The text hierarchy may thus help to measure
the contributions of COD recognition under such the common
practice.

There should be two types of experimental data: in-space’
data and out-space data. The former was for training the
systems and testing DC performances, while the latter was for
testing DF performances (since it should be filtered out).
Therefore, we randomly and comprehensively removed 20
leaf categories from the text hierarchy (i.e. about 10% of the

International Journal of Kais. Special Edition December 2005

leaf categories). That is, the documents in these 20 categories
served as the out-space data, while the final text hierarchy
contained 191 leaf categories (211-20), which served as the in-
space data.

To conduct thorough evaluation, we employed 5-
fold validation: 20% of the documents in each
category were extracted for testing while the other
documents were for training, and the process
repeated 5 times so that each document was used for
testing exactly once. In each fold of the experiment,
the out-space data was also used to test the systems’
performances in DF.

4.2. Evaluation criteria

DC and DF require different evaluation criteria.
For DC, we employed precision (P) and recall (R),
which were common evaluation criteria in previous
studies. P was estimated by [total number of correct
classifications / total number of classifications
made], while R was estimated by [total number of
correct classifications / total number of correct
classifications that should be made]. To integrate P
and R into a single measure, the well-known F-
measure was employed as well:
FB=[([32+1)PR]/[BQP+R], where P is a parameter
governing the relative importance of P and R. As in
many studies, we set B to 1 (i.e. the F; measure),
placing the same emphasis on P and R.

To evaluate DF, we employed two criterta:
filtering ratio (FR) and average number of
misclassifications for misclassified out-space
documents (AM). FR was estimated by [number of
out-space documents filtered out / number of out-
space documents], while AM was estimated by [total
number of misclassifications / number of out-space
documents misclassified into the text hierarchy]. A
better system should reject more out-space
documents (i.e. higher FR) and avoid misclassifying
out-space documents into many categories (i.e. lower
AM).

4.3. Systems evaluated

In addition to ICenter, we implemented a baseline
filtering classifier for performance comparison. We
focused on those filtering classifiers that do not
conduct COD recognition, since previous COD-
based classifiers required extensive modifications in
order to perform DF and DC by COD recognition (as
noted in Section 2). The baseline may thus help to

justify the contributions of COD recognition to DF
and DC.

The baseline was RO+T, which was implemented
by incorporating a thresholding component to a
Rocchio classifier (RO). RO is a popular technique
routinely applied to similar tasks such as DF (e.g.
[10]) and DC (e.g. {11]). As in many previous
studies, the thresholding component tuned a relative
threshold for each category by analyzing DOA scores
of documents, which are estimated by the classifier.
As in many studies (e.g. [2]), all training documents
were used to tune the thresholds. The thresholds
were tuned to optimize the system’s performance in
F1, which was commonly employed in many
previous studies [12].

More specially, RO constructed a vector for each
document by employing the popular tfidf technique
to estimate the weight of each feature. The profile
(i.e. vector) of a category ¢ was set by computing 1,
X Y0occpDOC/|P| - M2 X Y pocenDOC/|N|, where Doc
was the vector of a document, P was the set of
vectors for “positive” documents (i.e. the documents
in ¢), and N was the set of vectors for “negative”
documents (i.e. the document not in c). In the
experiment, 1 and m2 were set to 16 and 4
respectively, since such setting was believed to be
promising [11]. Cosine similarity was employed to
estimate the DOA score of an input document with
respect to each category.

The baseline required a fixed (predefined) feature
set, which was built using the training documents.
The features are selected according to their weights,
which were estimated by the x; (chi-square)
weighting technique. The technique was shown to be
more promising than others [13]. Since there was no
perfect way to determine the size of the feature set,
we tested 5000, 20000, 40000, and 80000 (almost
equal to the total number of different terms in the in-
space data).

4.4, Results

Table 6 shows experimental results. Since ICenter
did not require feature set tuning, its performances
did not vary when the baseline employed different
feature set sizes (FS). The results showed that the
baseline achieved its best F; performance when its
feature set size was 40000. Under such a setting,

- 86 -

ICenter demonstrated significantly better
performance in precision (0.750 vs. 0.643, or 16.6%
improvement) and similar performance in recall
(0.504 vs. 0.531) and F; (0.602 vs. 0.582). This
indicated that ICenter was not only more stable
(since no system parameter such as feature set size
was required), but also more promising in achieving
higher-precision DC.

Table 6. Experimental results

Criteria FS=5000 FS=20000 | FS=40000 | FS=80000
P(ICenter) 0.750 0.750 0.750 0.750
P(RO+T) 0.518 0.623 0.643 0.645
R(ICenter) 0.504 0.504 0.504 0.504
R(RO+T) 0.471 0.520 0.531 0.528
F1(ICenter) 0.602 0.602 0.602 0.602
FIRO+T) 0.493 0.566 0.582 0.580
FR(ICenter) 0.739 0.739 0.739 0.739
FR(RO+T) 0.562 0.663 0.696 0.664
AM(ICenter) 1.206 1.206 1.206 1.206
AM(RO+T) 1.458 1.425 1.472 1.484

On the other hand, for DF, ICenter demonstrated
better performances on both FR and AM as well.
When compared with the baseline using a feature set
of size 40000 (as noted above, the baseline
performed best in such a setting), ICenter contributed
6.2% improvement on FR (0.739 vs. 0.696) and 18%
reduction of AM (1.206 vs. 1.472).

It is interesting to note that, when compared with
in-spaced test data, out-space test data was less
related to the data for classifier building and
threshold tuning. Therefore, the improvements on
out-space data further justified the contributions of
ICenter: through COD recognition, the system could
employ more reliable evidences without over-fitting
itself to specific training data. The contributions are
also of practical significance, since in practice, there
are much more out-space documents than in-space
documents.

5. Conclusion

This paper explores how and to what extent COD
recognition may contribute to integrated DF and DC.
Given a text hierarchy, ICenter successfully employs
COD recognition to reduce the errors of classifying
unsuitable documents into unsuitable categories.
Moreover, no trial-and-error tuning process is
required to build feature sets. The contributions are
of theoretical and practical significance. They may

-87 -

International Journal of Kais. Special Edition December 2005

be applied to many domains in which information is
entered, processed, managed, and shared at any time
among a community of users. To further improve
ICenter, we are analyzing the errors made by ICenter,
and developing effective strategies to tackle them.
Analyses indicated that noise filtering and user
involvement are two promising extensions.

6. References

[1] Arampatzis A., Beney J., Koster C. H. A., and
Weide T. P. van der (2001), KUN on the TREC-9
Filtering Track: Incrementality, Decay, and
Threshold Optimization for Adaptive Filtering
Systems, Proc. Of the 9™ Text Retrieval Conference
(Trec-9).

[2] Chai K. M. A., Ng H. T., and Chieu H. L. (2002),
Bayesian Online Classifiers for Text Classification
and Filtering, Proc. Of ACM SIGIR’02.

[3] Cohen W. W. and Singer Y. (1996), Context-
Sensitive Mining Methods for Text Categorization,
Proc. Of ACM SIGIR’96

[4] Dhillon I. S., and Kumar R. (2002), Enhanced
Word Clustering for Hierarchical Text Classification,
Proc. Of ACM SIGKDD 2002.

[5] Koller D. and Sahami M. (1997), Hierarchically
Classifying Documents Using Very Few Words,
Proc. Of ICML’97.

[6] Liu R.-L. and Lin W.-J. (2003), Mining for
Interactive Identification of Users’ Information
Needs, Information Systems, Vol. 28, No. 7.

[7] McCallum A., Rosenfeld R., Mitchell T., Ng A. Y.
(1998), Improving Text Classification by Shrinkage
in a Hierarchy of Classes, Proc. Of ICML’98.

[8] Riloff E. and Lehnert W. (1994), Information
Extraction as a Basis for High-Precision Text
Classification, ACM Transactions on Information
Systems, Vol. 12, No. 3.

[9] Robertson S. (200), Threshold Setting and
Performance Optimization in Adaptive Filtering,
Information Retrieval, Vol. 5.

[10] Schapire R. E., Singer Y., and Singhal A.
(1998), Boosting and Rocchio Applied to Text
Filtering, Proc. Of ACM SIGIR’98

[11] Wu H.., Phang T. H,, Liu B,, and Li X. (2002), A
Refinement Approach to Handling Model Misfit in
Text Categorization, Proc. Of ACM SIGKDD’02.
[12] Yang Y. (2001), A Study on Thresholding
Strategies for Text Categorization, Proc. Of ACM

International Journal of Kais. Special Edition December 2005

SIGIR’01.

[131 Yang Y. and Pedersen J. O. (1997), A
Comparative Study on Feature Selection in Text
Categorization, Proc. Of ICML’97.

[14] Zhang Y. and Callan J. (2001), Maximum
Likelihood Estimation for Filtering Thresholds, Proc.
Of ACM SIGIR’01

Dr. Haeng-Kon Kim is currently a
professor in the Department of
Computer Engineering, and Dean of
Engineering College, Catholic
University of Daegu in Korea. He
received his M.S and Ph.D degree in
Computer Engineering from Chung
Ang University in 1987 and 1991,
respectively. He has been a research
staff in Bell Lab. and NASA center in U.S.A. He also has
been researched at Central Michigan University in U.S.A.
He is a member of IEEE on Software Engineering, KISS
and KIPS. Dr. Kim is the Editor of the international
Journal of Computer and Information published quarterly

by Korea Information Science Society. His research
interests are Component Based Development, Component
Architecture, & Frameworks Design.

Hae-Sool Yang is a professor at
Graduate School of Venture,
Hoseo University, Korea. He
received his Ph. D. degree in
computer science from Osaka
University, Japan, in 1990. He was
a professor at Kangwon National
University, Korea from 1980 to
1995. He was a head of
INSQ(Institute of Software Quality) from 1995 to
2002. Currently, he is a vice president of The
International Association for Computer & Information
Science(ACIS) and Korea Information Processing
Society(KIPS). He has been engaged in research in the
field of software quality assurance, object-oriented
software design & programming, system integration,
evaluation of software process & products quality,
software project management, component technology. He
is a member of KIPS, KISS, IPSJ, ACIS.

- 88

