• 제목/요약/키워드: dnn

검색결과 402건 처리시간 0.031초

DNN 기반 수어 번역 모델을 통한 성능 분석 (Performance Analysis Using a DNN-Based Sign Language Translation Model)

  • 정민재;노승환;홍준기
    • 한국빅데이터학회지
    • /
    • 제9권1호
    • /
    • pp.187-196
    • /
    • 2024
  • 본 연구에서는 수어의 좌표를 압축하여 학습 시간을 획기적으로 단축시킬 수 있는 DNN (Deep Neural Network) 기반 수어 번역 모델을 제안하고 수어 좌표 압축 유무에 따른 정확도와 모델 학습 시간을 비교 분석하였다. 제안한 모델을 사용하여 수어를 번역한 결과, 수어 영상을 압축하기 전과 후의 정확도는 약 5.9% 감소한 반면, 학습 시간은 56.57% 감소하여 수어 번역 정확도 손실 대비 학습 시간에서 많은 이득을 얻는 것을 확인하였다.

음성 특징 필터를 이용한 딥러닝 기반 음성 감정 인식 기술 (Deep Learning-Based Speech Emotion Recognition Technology Using Voice Feature Filters)

  • 신현삼;홍준기
    • 한국빅데이터학회지
    • /
    • 제8권2호
    • /
    • pp.223-231
    • /
    • 2023
  • 본 연구에선 딥러닝 기반 음성 신호로부터 음성의 특징을 추출하고 분석하여 필터를 생성하고, 생성된 필터를 이용하여 음성 신호로부터 감정을 인식하는 모델을 제안하고 감정 인식 정확도 성능을 평가하였다. 제안한 모델을 사용한 시뮬레이션 결과에 따르면, DNN (Deep Neural Network)과 RNN (Recurrent Neural Network)의 평균 감정인식 정확도는 각각 84.59%와 84.52%으로 매우 비슷한 성능을 나타냈다. 하지만 DNN의 시뮬레이션 소요 시간은 RNN보다 약 44.5% 짧은 시뮬레이션 시간으로 감정을 예측할 수 있는 것을 확인하였다.

Deep Neural Network(DNN) 기반 Clinic Decision Support System(CDSS) Framework (Deep Neural Network(DNN) based Clinic Decision Support System(CDSS) Framework)

  • 유혜린;조인휘
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2022년도 추계학술발표대회
    • /
    • pp.357-358
    • /
    • 2022
  • 이 논문은 Deep Learning 을 이용해 의사의 진단의 도움을 줄 수 있는 Clinic Decision Support System(CDSS) Framework 를 제안한다. 당뇨병, 고혈압, 고지혈증 같은 대사질환은 증상이 있는 경우도 있지만 없는 경우가 대부분이다.[1] 그렇기 때문에 원격으로 진료할 경우 대사질환에 대한 부분을 놓칠 수 있다. 이러한 부분을 챗봇이 의사에게 Deep Neural Network(DNN)으로 예측된 정보를 제공해 도움을 준다.

동아시아 광역 데이터를 활용한 DNN 기반의 서울지역 PM10 예보모델의 개발 (Development of PM10 Forecasting Model for Seoul Based on DNN Using East Asian Wide Area Data)

  • 유숙현
    • 한국멀티미디어학회논문지
    • /
    • 제22권11호
    • /
    • pp.1300-1312
    • /
    • 2019
  • BSTRACT In this paper, PM10 forecast model using DNN(Deep Neural Network) is developed for Seoul region. The previous Julian forecast model has been developed using weather and air quality data of Seoul region only. This model gives excellent results for accuracy and false alarm rates, but poor result for POD(Probability of Detection). To solve this problem, an WA(Wide Area) forecasting model that uses Chinese data is developed. The data is highly correlated with the emergence of high concentrations of PM10 in Korea. As a result, the WA model shows better accuracy, and POD improving of 3%(D+0), 21%(D+1), and 36%(D+2) for each forecast period compared with the Julian model.

깊은 신경망 특징 기반 화자 검증 시스템의 성능 비교 (Performance Comparison of Deep Feature Based Speaker Verification Systems)

  • 김대현;성우경;김홍국
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.9-16
    • /
    • 2015
  • In this paper, several experiments are performed according to deep neural network (DNN) based features for the performance comparison of speaker verification (SV) systems. To this end, input features for a DNN, such as mel-frequency cepstral coefficient (MFCC), linear-frequency cepstral coefficient (LFCC), and perceptual linear prediction (PLP), are first compared in a view of the SV performance. After that, the effect of a DNN training method and a structure of hidden layers of DNNs on the SV performance is investigated depending on the type of features. The performance of an SV system is then evaluated on the basis of I-vector or probabilistic linear discriminant analysis (PLDA) scoring method. It is shown from SV experiments that a tandem feature of DNN bottleneck feature and MFCC feature gives the best performance when DNNs are configured using a rectangular type of hidden layers and trained with a supervised training method.

OpenCV 내장 CPU 및 GPU 함수를 이용한 DNN 추론 시간 복잡도 분석 (Performance Analysis of DNN inference using OpenCV Built in CPU and GPU Functions)

  • 박천수
    • 반도체디스플레이기술학회지
    • /
    • 제21권1호
    • /
    • pp.75-78
    • /
    • 2022
  • Deep Neural Networks (DNN) has become an essential data processing architecture for the implementation of multiple computer vision tasks. Recently, DNN-based algorithms achieve much higher recognition accuracy than traditional algorithms based on shallow learning. However, training and inference DNNs require huge computational capabilities than daily usage purposes of computers. Moreover, with increased size and depth of DNNs, CPUs may be unsatisfactory since they use serial processing by default. GPUs are the solution that come up with greater speed compared to CPUs because of their Parallel Processing/Computation nature. In this paper, we analyze the inference time complexity of DNNs using well-known computer vision library, OpenCV. We measure and analyze inference time complexity for three cases, CPU, GPU-Float32, and GPU-Float16.

Application of artificial intelligence for solving the engineering problems

  • Xiaofei Liu;Xiaoli Wang
    • Structural Engineering and Mechanics
    • /
    • 제85권1호
    • /
    • pp.15-27
    • /
    • 2023
  • Using artificial intelligence and internet of things methods in engineering and industrial problems has become a widespread method in recent years. The low computational costs and high accuracy without the need to engage human resources in comparison to engineering demands are the main advantages of artificial intelligence. In the present paper, a deep neural network (DNN) with a specific method of optimization is utilize to predict fundamental natural frequency of a cylindrical structure. To provide data for training the DNN, a detailed numerical analysis is presented with the aid of functionally modified couple stress theory (FMCS) and first-order shear deformation theory (FSDT). The governing equations obtained using Hamilton's principle, are further solved engaging generalized differential quadrature method. The results of the numerical solution are utilized to train and test the DNN model. The results are validated at the first step and a comprehensive parametric results are presented thereafter. The results show the high accuracy of the DNN results and effects of different geometrical, modeling and material parameters in the natural frequencies of the structure.

Haar Cascade와 DNN 기반의 실시간 얼굴 표정 및 음성 감정 분석기 구현 (Implementation of Real Time Facial Expression and Speech Emotion Analyzer based on Haar Cascade and DNN)

  • 유찬영;서덕규;정유철
    • 한국컴퓨터정보학회:학술대회논문집
    • /
    • 한국컴퓨터정보학회 2021년도 제63차 동계학술대회논문집 29권1호
    • /
    • pp.33-36
    • /
    • 2021
  • 본 논문에서는 인간의 표정과 목소리를 기반으로 한 감정 분석기를 제안한다. 제안하는 분석기들은 수많은 인간의 표정 중 뚜렷한 특징을 가진 표정 7가지를 별도의 클래스로 구성하며, DNN 모델을 수정하여 사용하였다. 또한, 음성 데이터는 학습 데이터 증식을 위한 Data Augmentation을 하였으며, 학습 도중 과적합을 방지하기 위해 콜백 함수를 사용하여 가장 최적의 성능에 도달했을 때, Early-stop 되도록 설정했다. 제안하는 표정 감정 분석 모델의 학습 결과는 val loss값이 0.94, val accuracy 값은 0.66이고, 음성 감정 분석 모델의 학습 결과는 val loss 결과값이 0.89, val accuracy 값은 0.65로, OpenCV 라이브러리를 사용한 모델 테스트는 안정적인 결과를 도출하였다.

  • PDF

미디어 오디오에서의 DNN 기반 음성 검출 (DNN based Speech Detection for the Media Audio)

  • 장인선;안충현;서정일;장윤선
    • 방송공학회논문지
    • /
    • 제22권5호
    • /
    • pp.632-642
    • /
    • 2017
  • 본 논문에서는 미디어 오디오의 음향 특성 및 문맥 정보를 활용한 DNN 기반 음성 검출 시스템을 제안한다. 미디어 오디오 내에 포함되어 있는 음성과 비음성을 구분하기 위한 음성 검출 기법은 효과적인 음성 처리를 위해 필수적인 전처리 기술이지만 미디어 오디오 신호에는 다양한 형태의 음원이 복합적으로 포함되어 있으므로 기존의 신호처리 기법으로는 높은 성능을 얻기에는 어려움이 있었다. 제안하는 기술은 미디어 오디오의 고조파와 퍼커시브 성분을 분리하고, 오디오 콘텐츠에 포함된 문맥 정보를 반영하여 DNN 입력 벡터를 구성함으로써 음성 검출 성능을 개선할 수 있다. 제안하는 시스템의 성능을 검증하기 위하여 20시간 이상 분량의 드라마를 활용하여 음성 검출용 데이터 세트를 제작하였으며 범용으로 공개된 8시간 분량의 헐리우드 영화 데이터 세트를 추가로 확보하여 실험에 활용하였다. 실험에서는 두 데이터 세트에 대한 교차 검증을 통하여 제안하는 시스템이 기존 방법에 비해 우수한 성능을 보임을 확인하였다.

DNN 학습을 이용한 퍼스널 비디오 시퀀스의 멀티 모달 기반 이벤트 분류 방법 (A Personal Video Event Classification Method based on Multi-Modalities by DNN-Learning)

  • 이유진;낭종호
    • 정보과학회 논문지
    • /
    • 제43권11호
    • /
    • pp.1281-1297
    • /
    • 2016
  • 최근 스마트 기기의 보급으로 자유롭게 비디오 컨텐츠를 생성하고 이를 빠르고 편리하게 공유할 수 있는 네트워크 환경이 갖추어지면서, 퍼스널 비디오가 급증하고 있다. 그러나, 퍼스널 비디오는 비디오라는 특성 상 멀티 모달리티로 구성되어 있으면서 데이터가 시간의 흐름에 따라 변화하기 때문에 이벤트 분류를 할 때 이에 대한 고려가 필요하다. 본 논문에서는 비디오 내의 멀티 모달리티들로부터 고수준의 특징을 추출하여 시간 순으로 재배열한 것을 바탕으로 모달리티 사이의 연관관계를 Deep Neural Network(DNN)으로 학습하여 퍼스널 비디오 이벤트를 분류하는 방법을 제안한다. 제안하는 방법은 비디오에 내포된 이미지와 오디오를 시간적으로 동기화하여 추출한 후 GoogLeNet과 Multi-Layer Perceptron(MLP)을 이용하여 각각 고수준 정보를 추출한다. 그리고 이들을 비디오에 표현된 시간순으로 재 배열하여 비디오 한 편당 하나의 특징으로 재 생성하고 이를 바탕으로 학습한 DNN을 이용하여 퍼스널 비디오 이벤트를 분류한다.