• 제목/요약/키워드: divisors

검색결과 88건 처리시간 0.023초

A NOTE ON THE VALUATION

  • Park, Joong-Soo
    • 한국수학교육학회지시리즈B:순수및응용수학
    • /
    • 제1권1호
    • /
    • pp.7-11
    • /
    • 1994
  • Classically, valuation theory is closely related to the theory of divisors and conversely. If D is a Dedekined ring and K is its quotient field, then we can clearly construct the theory of divisors on D (or K), and then we can induce all the valuations on K ([3]). In particular, if K is a number field and A is the ring of algebraic integers, then since Z is Dedekind, A is a Dedekind rign and K is the field of fractions of A.(omitted)

  • PDF

ON DIVISORS COMPUTING MLD'S AND LCT'S

  • Blum, Harold
    • 대한수학회보
    • /
    • 제58권1호
    • /
    • pp.113-132
    • /
    • 2021
  • We show that if a divisor centered over a point on a smooth surface computes a minimal log discrepancy, then the divisor also computes a log canonical threshold. To prove the result, we study the asymptotic log canonical threshold of the graded sequence of ideals associated to a divisor over a variety. We systematically study this invariant and prove a result describing which divisors compute asymptotic log canonical thresholds.

EXTENDED ZERO-DIVISOR GRAPHS OF IDEALIZATIONS

  • Bennis, Driss;Mikram, Jilali;Taraza, Fouad
    • 대한수학회논문집
    • /
    • 제32권1호
    • /
    • pp.7-17
    • /
    • 2017
  • Let R be a commutative ring with zero-divisors Z(R). The extended zero-divisor graph of R, denoted by $\bar{\Gamma}(R)$, is the (simple) graph with vertices $Z(R)^*=Z(R){\backslash}\{0\}$, the set of nonzero zero-divisors of R, where two distinct nonzero zero-divisors x and y are adjacent whenever there exist two non-negative integers n and m such that $x^ny^m=0$ with $x^n{\neq}0$ and $y^m{\neq}0$. In this paper, we consider the extended zero-divisor graphs of idealizations $R{\ltimes}M$ (where M is an R-module). At first, we distinguish when $\bar{\Gamma}(R{\ltimes}M)$ and the classical zero-divisor graph ${\Gamma}(R{\ltimes}M)$ coincide. Various examples in this context are given. Among other things, the diameter and the girth of $\bar{\Gamma}(R{\ltimes}M)$ are also studied.

THE STRONG MORI PROPERTY IN RINGS WITH ZERO DIVISORS

  • ZHOU, DECHUAN;WANG, FANGGUI
    • 대한수학회보
    • /
    • 제52권4호
    • /
    • pp.1285-1295
    • /
    • 2015
  • An SM domain is an integral domain which satisfies the ascending chain condition on w-ideals. Then an SM domain also satisfies the descending chain condition on those chains of v-ideals whose intersection is not zero. In this paper, a study is begun to extend these properties to commutative rings with zero divisors. A $Q_0$-SM ring is defined to be a ring which satisfies the ascending chain condition on semiregular w-ideals and satisfies the descending chain condition on those chains of semiregular v-ideals whose intersection is semiregular. In this paper, some properties of $Q_0$-SM rings are discussed and examples are provided to show the difference between $Q_0$-SM rings and SM rings and the difference between $Q_0$-SM rings and $Q_0$-Mori rings.

UNIT-DUO RINGS AND RELATED GRAPHS OF ZERO DIVISORS

  • Han, Juncheol;Lee, Yang;Park, Sangwon
    • 대한수학회보
    • /
    • 제53권6호
    • /
    • pp.1629-1643
    • /
    • 2016
  • Let R be a ring with identity, X be the set of all nonzero, nonunits of R and G be the group of all units of R. A ring R is called unit-duo ring if $[x]_{\ell}=[x]_r$ for all $x{\in}X$ where $[x]_{\ell}=\{ux{\mid}u{\in}G\}$ (resp. $[x]_r=\{xu{\mid}u{\in}G\}$) which are equivalence classes on X. It is shown that for a semisimple unit-duo ring R (for example, a strongly regular ring), there exist a finite number of equivalence classes on X if and only if R is artinian. By considering the zero divisor graph (denoted ${\tilde{\Gamma}}(R)$) determined by equivalence classes of zero divisors of a unit-duo ring R, it is shown that for a unit-duo ring R such that ${\tilde{\Gamma}}(R)$ is a finite graph, R is local if and only if diam(${\tilde{\Gamma}}(R)$) = 2.

DIVISOR FUNCTIONS AND WEIERSTRASS FUNCTIONS ARISING FROM q-SERIES

  • Kim, Dae-Yeoul;Kim, Min-Soo
    • 대한수학회보
    • /
    • 제49권4호
    • /
    • pp.693-704
    • /
    • 2012
  • We consider Weierstrass functions and divisor functions arising from $q$-series. Using these we can obtain new identities for divisor functions. Farkas [3] provided a relation between the sums of divisors satisfying congruence conditions and the sums of numbers of divisors satisfying congruence conditions. In the proof he took logarithmic derivative to theta functions and used the heat equation. In this note, however, we obtain a similar result by differentiating further. For any $n{\geq}1$, we have $$k{\cdot}{\tau}_{2;k,l}(n)=2n{\cdot}E_{\frac{k-l}{2}}(n;k)+l{\cdot}{\tau}_{1;k,l}(n)+2k{\cdot}{\sum_{j=1}^{n-1}}E_{\frac{k-1}{2}(j;k){\tau}_{1;k,l}(n-j)$$. Finally, we shall give a table for $E_1(N;3)$, ${\sigma}(N)$, ${\tau}_{1;3,1}(N)$ and ${\tau}_{2;3,1}(N)$ ($1{\leq}N{\leq}50$) and state simulation results for them.