• Title/Summary/Keyword: diversity antenna

Search Result 353, Processing Time 0.026 seconds

The performance of MIMO cooperative communication systems using the relay with multi-antennas and DSTC

  • Chan Kyu Kim
    • International Journal of Internet, Broadcasting and Communication
    • /
    • v.15 no.3
    • /
    • pp.14-23
    • /
    • 2023
  • The cooperative communication systems using MIMO(multiple input multiple-output) relay are known as one of the most promising techniques to improve the performance and coverage of wireless communication systems. In this paper, we propose the cooperative communication systems using the relay with multi-antennas and DSTC(distributed space time coding) for decode-and-forward protocol. As using DSTC for DF(decode-and-forward), we can minimize the risk of error propagation at the wireless system using relay system. Also, the MIMO channel cab be formed by multi-antenna and DSTC at the MS(mobile station)-RS(relay station) and at the RS-BS(base station).Therefore, obtaining truly constructive the MIMO diversity and cooperative diversity gain from the proposed approach, the performance of system can be more improved than one of conventional system (relay with single antenna, no relay). The improvement in bit error rate is investigated through numerical analysis of the cooperative communication system with the proposed approach.

Microstrip patch antenna using 3 dimensional microstrip transition (3차원 천이를 이용한 마이크로스트립 패치 안테나)

  • 박동국;최형동
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.5 no.4
    • /
    • pp.817-821
    • /
    • 2001
  • In this paper, we design a microstrip patch antenna using 3-dimensional microstrip transition with the VSWR 1.3 over the PCS band (1.75 -1.87 GHz). We study experimentally the effect of the antenna parameters on antenna input impedance. And using the proposed antenna, we fabricate a polarization diversity any antenna and discuss the possibility of antenna for PCS base station.

  • PDF

A Unit-Cell Varying Pattern Reconfigurable Zeroth-order Resonance Antenna

  • Hyeon-Cheol Ki
    • International journal of advanced smart convergence
    • /
    • v.13 no.2
    • /
    • pp.1-6
    • /
    • 2024
  • Reconfiguration and miniaturization of antennas have become key attributes in modern wireless communication systems. Reconfiguration of radiation pattern can alleviate the problems encountered in modern wireless communication systems such as multi-path problems. Physical limitation of miniaturization also can be overcome by using a zeroth-order resonance (ZOR) antenna based on metamaterial. In order to achieve reconfiguration and miniaturization of antennas at the same time, we propose a new pattern reconfigurable zeroth-order resonance (ZOR) antenna that reconfigures the radiation patterns by varying the position and the number of unit cells comprising the antenna. The antenna is fabricated in an equilateral triangular shaped symmetrical structure to increase pattern variety. This structure can easily provide eight different radiation patterns (two omnidirectional and six monopole like patterns).

SLNR-based User Scheduling in Multi-cell networks: from Multi-antenna to Large-Scale Antenna System

  • Li, Yanchun;Zhu, Guangxi;Chen, Hua;Jo, Minho;Liu, Yingzhuang
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.3
    • /
    • pp.945-964
    • /
    • 2014
  • In this paper, we investigate the performance of Signal to Leakage and Noise Radio (SLNR) based user scheduling in uplink of multi-cell with large-scale antenna system. Large antenna array is desired to improve the performance in future system by providing better beamforming capability. However, some studies have found that the signal channel is 'hardened' (becomes invariant) when the antenna number goes extremely large, which implies that the signal channel aware user scheduling may have no gain at all. With the mathematic tool of order statistics, we analyzed the signal and interference terms of SLNR in a homogeneous multicell network. The derived distribution function of signal and interference shows that the leakage channel's variance is much more influential than the signal channel's variance in large-scale antenna regime. So even though the signal channel is hardened, the SLNR-based scheduling can achieve remarkable multiuser diversity (MUD) gain due to the fluctuation of the uplink leakage channel. By providing the final SINR distribution, we verify that the SLNR-based scheduling can leverage MUD in a better way than the signal channel based scheduling. The Monte Carlo simulations show that the throughput gain of SLNR-based scheduling over signal channel based scheduling is significant.

Performance of Convolutionally-Coded MIMO Systems with Antenna Selection

  • Hamouda Walaa;Ghrayeb Ali
    • Journal of Communications and Networks
    • /
    • v.7 no.3
    • /
    • pp.307-312
    • /
    • 2005
  • In this work, we study the performance of a serial concatenated scheme comprising a convolutional code (CC) and an orthogonal space-time block code (STBC) separated by an inter-leaver. Specifically, we derive performance bounds for this concatenated scheme, clearly quantify the impact of using a CC in conjunction with a STBC, and compare that to using a STBC code only. Furthermore, we examine the impact of performing antenna selection at the receiver on the diversity order and coding gain of the system. In performing antenna selection, we adopt a selection criterion that is based on maximizing the instantaneous signal-to­noise ratio (SNR) at the receiver. That is, we select a subset of the available receive antennas that maximizes the received SNR. Two channel models are considered in this study: Fast fading and quasi-static fading. For both cases, our analyses show that substantial coding gains can be achieved, which is confirmed through Monte-Carlo simulations. We demonstrate that the spatial diversity is maintained for all cases, whereas the coding gain deteriorates by no more than $10\;log_{10}$ (M / L) dB, all relative to the full complexity multiple-input multiple-output (MIMO) system.

Performance Analysis of Angle Time Transmit Diversity in Urban Area (도심환경에서 각도-시간 송신다이버시티의 성능분석)

  • Park, Byeong-Hoon
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.60 no.4
    • /
    • pp.200-205
    • /
    • 2011
  • In multipath fading channel, diversity is essential to mitigate the impairments. In this paper, we have proposed the angle diversity scheme called ATTD(Angle Time Transmit Diversity) instead of Alamouti's STTD(Space Time Transmit Diversity) and have analyzed the performance of the proposed scheme when signal powers caused by the transmission to different angles are different. Based on it, we have measured the wireless vector-channel in the urban area, which has lots of high-story buildings, using the data collected from the 8 by 4 smart array antenna system that we made. According to the measured data, the received signals from different angles have different signal powers. Our performance analysis results show that the proposed scheme has better performance than the space diversity scheme when the received path signal power is at least -7dB compare to the strongest path signal power.

Low Profile Dual-Polarized Antenna for SDARS Application

  • Hong Young-Pyo;Kim Jung-Min;Jeong Soon-Chul;Kim Dong-Hyun;Yook Jong-Gwan
    • Journal of electromagnetic engineering and science
    • /
    • v.5 no.1
    • /
    • pp.31-35
    • /
    • 2005
  • This paper presents low form factor dual polarized antenna incorporating low profile annular ring patch antenna having 90$^{\circ}$ phase delay element for circular polarization(CP) and a reactive-loaded monopole linear polarized(LP) antenna. Both types of receiving antennas operate in the same frequency region from 2.320 GHz to 2.345 GHz, while different polarizations are used to take advantage of polarization diversity. The proposed CP antenna has good broadside radiation patterns, while the LP antenna reveals monopole-like radiation patterns. The gains of the antennas are measured to be 1.93 dBi and 2.24 dBi for CP and LP, respectively.

Design of a Antenna with Enhanced Isolation for US-PCS Indoor Repeater (격리도가 향상된 US-PCS 대역 댁내용 중계기 안테나 설계)

  • Ahn Jung-Sun;Lee Jin-Sung;Jung Byung-Woon;Lee Byungje
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.16 no.1 s.92
    • /
    • pp.9-18
    • /
    • 2005
  • This paper presents an antenna for US-PCS band indoor repeaters with enhancement of isolation. In common repeaters require an enough isolation to reduce the interferences between transmitted and received signals. Thus, it is investigated to improve front-to-back ratio of IBD(Integrated Balun Dipole) antenna which has a good linear polarization with a cavity or multi-cavity by using polarization diversity and aperture matching method. From the simulated and measured results, the antenna realized by using polarization diversity and aperture matching method has a VSWR below 1.5, gain over 8 dBi and enhanced isolation of 15$\~$24 dB in US-PCS band.

Performance Analysis of HDR-WPAN System Using Multiple Antenna Scheme (다중 안테나 방식을 적용한 HDR-WPAN 시스템의 성능분석)

  • Kang, Chul-Gyu;Oh, Chang-Heon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • v.9 no.2
    • /
    • pp.1037-1040
    • /
    • 2005
  • In this paper, we analyze the performance of high data rate wireless personal area network (HDR-WPAN) system using multiple antenna scheme, space-time block code in fading channel. Multiple antenna technique is used to improve the error performance by combining the receive signal through multiple receive antenna. Space-time block code is a space-time diversity scheme which can obtain the maximum space diversity gain and easily implements a ML receiver via a simple process. HDR-WPAN system using space-time block code obtain about 14dB diversity gaint at BER 10$^{-5}$ in multipath fading channel. From the simulation result, We confirm that HDR-WPAN system adopting space-time block code has reliable communication even low power.

  • PDF