• Title/Summary/Keyword: disulfide bonds

Search Result 65, Processing Time 0.019 seconds

Studies on the Synthesis of Bis-dithiocarbamates as Prodrugs of Isothiocyanates (Isothiocyanate 유도체의 Prodrug를 위한 합성 연구)

  • 심영섭;정오영;김완주;이문희
    • YAKHAK HOEJI
    • /
    • v.26 no.2
    • /
    • pp.91-96
    • /
    • 1982
  • In an attempt to design prodrugs for the Derivatives of the Isothiocyanates R-N=C=S were synthesized eleven novel bis-dithiocarbamates. The best way of preparing the dithiocarbamates was the formation of the dithiocarbonates followed by the reaction of the dithiocarbonates with amines. Thus, the treatment of the diols with carbon disulfide in the presense of potassium hydroxide afforded the potassium salts of the ditniocarbonic acids. The potassium salts were then reacted with alkyl halides to give the dithiocarbonates, which upon treatment with amines produces the dithiocarbamates. In case of vicinal diol (n=o in the above formula), only one of the hydroxy groups was reacted to give the mono-dithiocarbonate. The dithiocarbonates failed to react with amides and aromatic amines. Dithiocarbonates of the different types were obtained when the active double bonds, such as $CH_{2}=CH-Z$ , (Z are electron withdrawing groups), were allowed to react with the free dithiocarbonic acids produced in situ by carefully neutralizing the Potassium salts of the corresponding acids. These compounds are considered to be of some value as prodrugs for the active double bonds.

  • PDF

Rational Introduction of Disulfide Bond to Enhance Optimal Temperature of Lipomyces starkeyi $\alpha$-Dextranase Expressed in Pichia pastoris

  • Chen, Lin;Yu, Chao;Zhou, Xiangshan;Zhang, Yuanxing
    • Journal of Microbiology and Biotechnology
    • /
    • v.19 no.12
    • /
    • pp.1506-1513
    • /
    • 2009
  • $\alpha$-Dextranase, which can hydrolyze dextran, is largely used in the sugar industry. However, a thermostable $\alpha$-dextranase is needed to alleviate the viscosity of syrups and clean blocked machines. Thus, to improve the optimal temperature of Lipomyces starkeyi $\alpha$-dextranase expressed by Pichia pastoris, the rational introduction of a de novo designed disulfide bond was investigated. Based on the known structure of Penicillium minioluteum dextranase, L. starkeyi $\alpha$-dextranase was constructed using homology modeling. Four amino acids residues were then selected for site-directed mutagenesis to cysteine. When compared with the wild-type dextranase, the mutant DexM2 (D279C/S289C) showed a more than $13^{\circ}C$ improvement on its optimal temperature. DexM2 and DexM12 (T245C/N248C, D279C/S289C) also showed a better thermal stability than the wild-type dextranase. After the introduction of two disulfide bonds, the specific activity of DexM12 was evaluated and found to be two times higher than that of the wild-type. Moreover, DexM12 also showed the highest $V_{max}$.

Design and Synthesis of Devices Releasing Insulin in response to Redox Reaction of Glucose (Glucose의 Redox 반응에 의한 인슐린 방출 Device의 설계와 합성)

  • Chung, Dong-June;Ito, Yoshihiro;Imanishi, Yukio;Shim, Jyong-Sup
    • Applied Chemistry for Engineering
    • /
    • v.1 no.2
    • /
    • pp.107-115
    • /
    • 1990
  • New insulin-releasing system on the basis of the redox reaction of glucose was synthesized by immobilizing insulin through a disulfide bond(5, 5'-dithiobis(2-nitrobenzoic acid) to polymer membrane(poly(methyl methacrylate)) and enzyme(glucose oxidase). The disulfide bonds were cleaved upon oxidation of glucose with glucose dehydrogenase and glucose oxidase, releasing insulin from the membrane and enzyme. Sensitivity to glucose concentration was enhanced by coimmobilization of enzyme cofactors(nicotinamide adenin dinucleotide and flavin adenin dinucleotide) acting as electron mediator(for the membrane device), and further enhanced by direct immobilization of insulin on glucose oxidase(for the protein device). Both systems were specific to glucose, and the released insulin was indistinguishable from native insulin. The biological activity of released insulin was 81% of native insulin.

  • PDF

Identification of duck liver-expressed antimicrobial peptide 2 and characterization of its bactericidal activity

  • Hong, Yeojin;Truong, Anh Duc;Lee, Janggeun;Lee, Kyungbaek;Kim, Geun-Bae;Heo, Kang-Nyeong;Lillehoj, Hyun S.;Hong, Yeong Ho
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.32 no.7
    • /
    • pp.1052-1061
    • /
    • 2019
  • Objective: This study was conducted to identify duck liver-expressed antimicrobial peptide 2 (LEAP-2) and demonstrate its antimicrobial activity against various pathogens. Methods: Tissue samples were collected from 6 to 8-week-old Pekin ducks (Anas platyrhynchos domesticus), total RNA was extracted, and cDNA was synthesized. To confirm the duck LEAP-2 transcript expression levels, quantitative real-time polymerase chain reaction was conducted. Two kinds of peptides (a linear peptide and a disulfide-type peptide) were synthesized to compare the antimicrobial activity. Then, antimicrobial activity assay and fluorescence microscopic analysis were conducted to demonstrate duck LEAP-2 bactericidal activity. Results: The duck LEAP-2 peptide sequence showed high identity with those of other avian species (>85%), as well as more than 55% of identity with mammalian sequences. LEAP-2 mRNA was highly expressed in the liver with duodenum next, and then followed by lung, spleen, bursa and jejunum and was the lowest in the muscle. Both of LEAP-2 peptides efficiently killed bacteria, although the disulfide-type LEAP-2 showed more powerful bactericidal activity. Also, gram-positive bacteria was more susceptible to duck LEAP-2 than gram-negative bacteria. Using microscopy, we confirmed that LEAP-2 peptides could kill bacteria by disrupting the bacterial cell envelope. Conclusion: Duck LEAP-2 showed its antimicrobial activity against both gram-positive and gram-negative bacteria. Disulfide bonds were important for the powerful killing effect by disrupting the bacterial cell envelope. Therefore, duck LEAP-2 can be used for effective antibiotics alternatives.

Solution structure and functional analysis of HelaTx1: the first toxin member of the κ-KTx5 subfamily

  • Park, Bong Gyu;Peigneur, Steve;Esaki, Nao;Yamaguchi, Yoko;Ryu, Jae Ha;Tytgat, Jan;Kim, Jae Il;Sato, Kazuki
    • BMB Reports
    • /
    • v.53 no.5
    • /
    • pp.260-265
    • /
    • 2020
  • Scorpion venom comprises a cocktail of toxins that have proven to be useful molecular tools for studying the pharmacological properties of membrane ion channels. HelaTx1, a short peptide neurotoxin isolated recently from the venom of the scorpion Heterometrus laoticus, is a 25 amino acid peptide with two disulfide bonds that shares low sequence homology with other scorpion toxins. HelaTx1 effectively decreases the amplitude of the K+ currents of voltage-gated Kv1.1 and Kv1.6 channels expressed in Xenopus oocytes, and was identified as the first toxin member of the κ-KTx5 subfamily, based on a sequence comparison and phylogenetic analysis. In the present study, we report the NMR solution structure of HelaTx1, and the major interaction points for its binding to voltage-gated Kv1.1 channels. The NMR results indicate that HelaTx1 adopts a helix-loop-helix fold linked by two disulfide bonds without any β-sheets, resembling the molecular folding of other cysteine-stabilized helix-loop-helix (Cs α/α) scorpion toxins such as κ-hefutoxin, HeTx, and OmTx, as well as conotoxin pl14a. A series of alanine-scanning analogs revealed a broad surface on the toxin molecule largely comprising positively-charged residues that is crucial for interaction with voltage-gated Kv1.1 channels. Interestingly, the functional dyad, a key molecular determinant for activity against voltage-gated potassium channels in other toxins, is not present in HelaTx1.

Schottky Barrier Free Contacts in Graphene/MoS2 Field-Effect-Transistor

  • Qiu, Dongri;Kim, Eun Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.209.2-209.2
    • /
    • 2015
  • Two dimensional layered materials, such as transition metal dichalcogenides (TMDs) family have been attracted significant attention due to novel physical and chemical properties. Among them, molybdenum disulfide ($MoS_2$) has novel physical phenomena such as absence of dangling bonds, lack of inversion symmetry, valley degrees of freedom. Previous studies have shown that the interface of metal/$MoS_2$ contacts significantly affects device performance due to presence of a scalable Schottky barrier height at their interface, resulting voltage drops and restricting carrier injection. In this study, we report a new device structure by using few-layer graphene as the bottom interconnections, in order to offer Schottky barrier free contact to bi-layer $MoS_2$. The fabrication of process start with mechanically exfoliates bulk graphite that served as the source/drain electrodes. The semiconducting $MoS_2$ flake was deposited onto a $SiO_2$ (280 nm-thick)/Si substrate in which graphene electrodes were pre-deposited. To evaluate the barrier height of contact, we employed thermionic-emission theory to describe our experimental findings. We demonstrate that, the Schottky barrier height dramatically decreases from 300 to 0 meV as function of gate voltages, and further becomes negative values. Our findings suggested that, few-layer graphene could be able to realize ohmic contact and to provide new opportunities in ohmic formations.

  • PDF

Heterologous Expression of Lignin Peroxidase H2 in Escherichia coli: In Vitro Refolding and Activation

  • Lee, Dong-Ho;Kim, Dong-Hyun
    • BMB Reports
    • /
    • v.32 no.5
    • /
    • pp.486-491
    • /
    • 1999
  • An engineered cDNA from Phanerochaete chrysosporium encoding both the mature and propeptide-sequence regions of lignin peroxidase H2 (Lip H2) was overexpressed in Escherichia coli BL21 (DE3) to evaluate its catalytic characteristics and potential application as a pollution scavenger. All expressed proteins were aggregated in an inactive inclusion body, which might be due to inherent disulfide bonds. Active enzyme was obtained by refolding with glutathione-mediated oxidation in refolding solution containing $Ca^{2+}$, heme, and urea. Propeptide-sequence region was not processed as evidenced by N-terminal sequence analysis. Recombinant Lip H2 (rLip H2) had the same physical properties of the native protein but differed in the $K_{cat}$. Catalytic efficiency ($k_{cat}/K_m$) of rLip H2 was slightly higher than that of the native enzyme. In order to express an active protein, fusion systems with thioredoxin or Dsb A, which have disulfide isomerase activity, were used. The fused proteins expressed by the Dsb A fusion vector were aggregated, whereas half of the thioredoxin fusion proteins were recovered as a soluble form but still catalytically inactive. These results suggest that Lip H2 may not be expressed as an active enzyme in Escherichia coli although the activity can be recovered by in vitro refolding.

  • PDF

Microstructural analyses of soyprotein fibers (대두 단백섬유의 미세구조 연구)

  • Kim, J.C.;Cho, S.J.;Byun, P.H.;Yoon, S.K.;Rhee, K.C.;Byun, S.M.
    • Applied Biological Chemistry
    • /
    • v.34 no.4
    • /
    • pp.353-359
    • /
    • 1991
  • As a tool for the texture analyses of the soyprotein fibers, the scanning electron microscopical microstructure were studied. With the results of TPA(Texture Profile Analysis), microstructural analyses of the soyprotein fibers showed that the disulfide and hydrogen bonds are one of the most important factors determining the shape and maintenance of fiber struture. The microstructures of the hydrated soyprotein dispersion and dope, as starting materials of the soyprotein fiber were presented.

  • PDF

Purification and Characterization of Recombinant Human Interferon Alpha 2a Produced from Saccharomyces cerevisiae

  • Rae, Tae-Ok;Chang, Ho-Jin;Kim, Jung-Ho;Park, Soon-Jae
    • BMB Reports
    • /
    • v.28 no.6
    • /
    • pp.477-483
    • /
    • 1995
  • The recombinant human interferon alpha 2a ($rhIFN-{\alpha}2a$), expressed in Saccharomyces cerevtsiae, was purified from insoluble aggregates. The inclusion body of $rhIFN-{\alpha}$ was solubilized by guanidine salt in the presence of disulfide reducing agent. The refolding of denatured $rhIFN-{\alpha}2a$ was achieved by simple dilution. The authentic interferon alpha, which has two correctly matched disulfide bonds, was seperated from incompletely oxidized $IFN-{\alpha}$ and dimeric $IFN-{\alpha}$ by use of a CM-Sepharose column, followed by size exclusion columns at two different pH conditions. The purified protein has been subjected to detailed physicochemical characterization including sequence determination. Unlike other $rhIFN-{\alpha}2a$ from E. coli reported, the $rhIFN-{\alpha}2a$ from S. cerevisiae has no methionine residue at its N-terminus originating from the start codon, ATG. The pI of the protein was determined to be 6.05 with a single band in the pI gel, which demonstrated that the purified $rhIFN-{\alpha}$ was homogeneous. The structural study using circular dichroism showed that the protein retains its three dimensional structure in the wide range of pH conditions between pH 3 and 9, and only minor strucural deformation was observed at pH 1.0.

  • PDF

Design and decoration of heparin on porous nanosilica via reversible disulfide linkages for controlled drug release

  • Nguyen, Dai Hai
    • Journal of IKEEE
    • /
    • v.21 no.3
    • /
    • pp.320-330
    • /
    • 2017
  • Porous nanosilica (PNS) has been identified as a potential candidate for controlled drug delivery. However, unmodified PNS-based carriers exhibited an initial release of loaded bioactive agents, which may limit their potential clinical applications. In this study, the surface of PNS was functionalized with adamantylamine (ADA) via disulfide bonds (-S-S-), PNS-S-S-ADA, which was then modified with cyclodextrin (CD)-heparin (Hep) (CD-Hep), PNS-S-S-CDH, for redox triggered rhodamine B (RhB) delivery. The obtained samples were then characterized by proton nuclear magnetic resonance ($^{1}H\;NMR$), Fourier transform infrared (FTIR), and transmission electron microscope (TEM). These results showed that PNS-S-S-CDH was successfully formed with spherical shape and average diameter of $45.64{\pm}2.33nm$. In addition, RhB was relatively encapsulated in the PNS-S-S-CDH (RhB@PNS-S-S-CDH) and slowly released up to 3 days. The release of RhB, in particular, was triggered due to the cleavage of -S-S- in the presence of dithiothreitol (DTT). It might be anticipated that the modified PNS can be used as redox-responsive drug delivery system in cancer therapy.