Purification and Characterization of Recombinant Human Interferon Alpha 2a Produced from Saccharomyces cerevisiae

  • Rae, Tae-Ok (LG Chem. Research Park, Biotech. Research Institute) ;
  • Chang, Ho-Jin (LG Chem. Research Park, Biotech. Research Institute) ;
  • Kim, Jung-Ho (LG Chem. Research Park, Biotech. Research Institute) ;
  • Park, Soon-Jae (LG Chem. Research Park, Biotech. Research Institute)
  • Received : 1995.07.26
  • Published : 1995.11.30

Abstract

The recombinant human interferon alpha 2a ($rhIFN-{\alpha}2a$), expressed in Saccharomyces cerevtsiae, was purified from insoluble aggregates. The inclusion body of $rhIFN-{\alpha}$ was solubilized by guanidine salt in the presence of disulfide reducing agent. The refolding of denatured $rhIFN-{\alpha}2a$ was achieved by simple dilution. The authentic interferon alpha, which has two correctly matched disulfide bonds, was seperated from incompletely oxidized $IFN-{\alpha}$ and dimeric $IFN-{\alpha}$ by use of a CM-Sepharose column, followed by size exclusion columns at two different pH conditions. The purified protein has been subjected to detailed physicochemical characterization including sequence determination. Unlike other $rhIFN-{\alpha}2a$ from E. coli reported, the $rhIFN-{\alpha}2a$ from S. cerevisiae has no methionine residue at its N-terminus originating from the start codon, ATG. The pI of the protein was determined to be 6.05 with a single band in the pI gel, which demonstrated that the purified $rhIFN-{\alpha}$ was homogeneous. The structural study using circular dichroism showed that the protein retains its three dimensional structure in the wide range of pH conditions between pH 3 and 9, and only minor strucural deformation was observed at pH 1.0.

Keywords

References

  1. J. Interferon Research v.6 Beilharz, M.W.;Nisbet, I.T.;Tymms, M.J.;Hertzog, P.J.;Linnane, A.W. https://doi.org/10.1089/jir.1986.6.677
  2. Int. J. Peptide Protein Res. v.20 Bewley, T.A.;Levine, H.L.;Wetzel, R.
  3. Cho, J.M.;Park, Y.W.;Park, S.J.;Bae, T.O.;Chang, H.J.
  4. Drugs v.45 no.2 Dorr, R.T.
  5. Nature v.287 Goeddel, D.V.;Yelverton, E.;Ullrich, A.;Heyneker, H.L.;Miozzari, Z.;Seebrug, P.H.;Dull, T.;May, L.;Stebbing, N.;Crea, R.;Maeda, S.;McCandliss, R.;Sloma, A.;Tabor, J.M.;Gross, M.;Gamilletti, P.C.;Pestka, S. https://doi.org/10.1038/287411a0
  6. Acta Pediatr Scan (Suppl) v.337 Hibi, I.;Takano, K.;Shizume, K.
  7. Korea J. BRM v.2 no.1 Kim, S.H.;Park, S.J.
  8. Methods in Enzymology v.119 Langer, J.A.;Pestka, S.
  9. Biochemistry v.23 Morehead, H.;Johnston, P.D.;Wetzel, R. https://doi.org/10.1021/bi00306a028
  10. Pharmac. Ther. v.29 Pestka, S.;Tamowski, S.J. https://doi.org/10.1016/0163-7258(85)90006-3
  11. Methods in Enzymology v.119 Pestka, S.
  12. Nature v.285 Secher, D.;Burke, D.C. https://doi.org/10.1038/285446a0
  13. J. Biol. Chem. v.267 no.8 Sen, G.C.;Lehgyel, P.
  14. Biochemistry v.22 Shire, S.J. https://doi.org/10.1021/bi00280a012
  15. Interferon-1979 Stewart, W.E.
  16. Methods in Enzymology v.119 Tamowski;Roy, S.K.;Liptak, R.A.;Lee, D.L.;Ning, R.Y.
  17. Nature v.289 Wetzel, R. https://doi.org/10.1038/289606a0
  18. J. Interferon Research v.3 Wetzel, R.;Perry, L.J.;Estell, D.A.;Lin, N.;Levine, H.L.;Slinker, B.;Fields, F.;Ross, M.J.;Shevely, J.