• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.025 seconds

An anti-noise real-time cross-correlation method for bolted joint monitoring using piezoceramic transducers

  • Ruan, Jiabiao;Zhang, Zhimin;Wang, Tao;Li, Yourong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.16 no.2
    • /
    • pp.281-294
    • /
    • 2015
  • Bolted joint connection is the most commonly used connection element in structures and devices. The loosening due to external dynamic loads cannot be observed and measured easily and may cause catastrophic loss especially in an extreme requirement and/or environment. In this paper, an innovative Real-time Cross-Correlation Method (RCCM) for monitoring of the bolted joint loosening was proposed. We apply time reversal process on stress wave propagation to obtain correlation signal. The correlation signal's peak amplitude represents the cross-correlation between the loosening state and the baseline working state; therefore, it can detect the state of loosening. Since the bolt states are uncorrelated with noise, the peak amplitude will not be affected by noise and disturbance while it increases SNR level and increases the measured signals' reliability. The correlation process is carried out online through physical wave propagation without any other post offline complicated analyses and calculations. We implemented the proposed RCCM on a single bolt/nut joint experimental device to quantitatively detect the loosening states successfully. After that we implemented the proposed method on a real large structure (reaction wall) with multiple bolted joint connections. Loosening indexes were built for both experiments to indicate the loosening states. Finally, we demonstrated the proposed method's great anti-noise and/or disturbance ability. In the instrumentation, we simply mounted Lead Zirconium Titanate (PZT) patches on the device/structure surface without any modifications of the bolted connection. The low-cost PZTs used as actuators and sensors for active sensing are easily extended to a sensing network for large scale bolted joint network monitoring.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Position Synchronization Control of Single Link Manipulators (단일 링크 머니퓰레이터들에 대한 위치 동기화 제어)

  • Song, Ki-Won
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.3
    • /
    • pp.6-12
    • /
    • 2011
  • Electric vehicles and robots are real-time distributed control systems composed of multiple drive subsystems using micro controller units. Each control subsystem should be modular, compact, power saving, interoperable and fault tolerable in order to be incorporated into the networked real-time distributed control system. Under the networked real-time distributed control the synchronization problem can be occurred to the position and orientation tracking control due to the load variance, mismatch and time delay between the multiple drive subsystems. This paper suggests two types of position synchronization control of the single link manipulators. One of them is composed of cross controller, Kalman filter and disturbance observer, and the other uses the generation of target trajectories to minimize the gradient vector of the scalar function which is composed of the sum of square errors between the reference input vector and the output vectors. The availability of the proposed control schemes is shown through the control experiments.

Environmental Impacts of Stone Quarry Exploitation - Aquatic Macroinvertebrate Community and Quarry Locality (수생태계에 미치는 석산개발의 영향 - 생물군집과 입지유형을 중심으로)

  • Lee, Sung Jin;Kim, Myoung Chul;Kim, Ji Young;Ro, Tae Ho
    • Journal of Korean Society on Water Environment
    • /
    • v.21 no.4
    • /
    • pp.368-378
    • /
    • 2005
  • Inorganic matters originated from stone quarries and manufacturing plants could alter the ecological characteristics of adjacent aquatic systems, especially the structure and function of benthic macroinvertebrate community. In such situation, the locality of stone quarry and the quantity of inorganic matters would be important factors that determined the disturbing strength to the benthic macroinvertebrate community. Locality patterns of stone quarries were classified into 3 types in relation to the stream ecosystem; stream-proximity, upstream-inclusion and tributary-inclusion type. In the result of species:abundance analysis, stone quarry B (upstream-inclusion type) showed geometric distribution, while others showed broken-stick distribution pattern. The benthic macroinvertebrate communities closer to stone quarries showed smaller species numbers and standing crops among all types of stone quarries. However the values of species evenness index were not seriously different between controls and directly affected sites. These results indicated that the effect of inorganic disturbance would differ from those of organic pollution that induced the highly dominant state occupied by tolerant species. Number of occurred species, standing crops, community indices and biotic indices indicated that the community of upstream-inclusion type was the most seriously damaged from the inorganic disturbance, and the community would be very simple and unstable. Tributary-inclusion stone quarry heavily damaged to tributary system in biologically, but influence to the main stream seemed to be depended on the scale of main stream. Among 3 types of stone quarry localities, stream-proximity type induced the least damages to benthic macroinvertebrate community, though the degrees of damage were different along with distances between stream and stone quarry.

A Study on The Synchronous Control of Dual Electric Propulsion System Based on the Coupling Structure (커플링구조에 기초한 전기추진시스템의 동기제어에 관한 연구)

  • Yang, Kyong-Uk;Byun, Jung-Hwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.2
    • /
    • pp.349-356
    • /
    • 2018
  • In this study, the synchronous control system is designed to restrain the speed difference generated between two propellers, namely, synchronous error in a dual electric propulsion system of unmanned surface vehicle, fish finder boat, etc. The control system based on coupling structure is composed of pre-filters and speed controllers for each propulsion system and a synchronous controller cross-coupled between two propulsion systems. The pre-filter and speed controller are designed in order that the propulsion system may follow the speed reference without overshoot and input saturation. And the synchronous controller is designed in consideration of damping and quickness of the synchronous controller system after analyzing effect of the skew disturbance and mismatched dynamic characteristics on synchronous error. Finally, the simulation results show that the designed control system is effective for elimination of synchronous error.

Adaptive Model-Free-Control-based Steering-Control Algorithm for Multi-Axle All-Terrain Cranes using the Recursive Least Squares with Forgetting (망각 순환 최소자승을 이용한 다축 전지형 크레인의 적응형 모델 독립 제어 기반 조향제어 알고리즘)

  • Oh, Kwangseok;Seo, Jaho
    • Journal of Drive and Control
    • /
    • v.14 no.2
    • /
    • pp.16-22
    • /
    • 2017
  • This paper presents the algorithm of an adaptive model-free-control-based steering control for multi-axle all-terrain cranes for which the recursive least squares with forgetting are applied. To optimally control the actual system in the real world, the linear or nonlinear mathematical model of the system should be given for the determination of the optimal control inputs; however, it is difficult to derive the mathematical model due to the actual system's complexity and nonlinearity. To address this problem, the proposed adaptive model-free controller is used to control the steering angle of a multi-axle crane. The proposed model-free control algorithm uses only the input and output signals of the system to determine the optimal inputs. The recursive least-squares algorithm identifies first-order systems. The uncertainty between the identified system and the actual system was estimated based on the disturbance observer. The proposed control algorithm was used for the steering control of a multi-axle crane, where only the steering input and the desired yaw rate were employed, to track the reference path. The controller and performance evaluations were constructed and conducted in the Matlab/Simulink environment. The evaluation results show that the proposed adaptive model-free-control-based steering-control algorithm produces a sound path-tracking performance.

The Fish Fauna and Disturbance of Geographical Distributions in the Eastern Civilian Control Line of Korea (민통선 동부지역의 어류상 및 지리적 분포 교란)

  • Park, Seungchul;Lee, Kwangyeol;Choi, Taebong;Kim, Wonmyung;Kim, Myungjin;Choi, Jaeseok
    • Journal of Environmental Impact Assessment
    • /
    • v.22 no.1
    • /
    • pp.27-37
    • /
    • 2013
  • The fish fauna and disturbance of geographical distributions in the eastern Civilian Control Line of Korea were investigated from May to September 2012. Total 35 species sampled during the period were belonged to 13 families. There were 9 Korean endemic species (25.71%) that distributed in the flows into West and South Sea. Distributions of invasion fishes in the studied streams based on geographical distributions of freshwater fish were total 13 species that classified 1 species, C. cuvieri from foreign country and 12 species from other water systems. Hence there have been anthropogenically introduced from too many years ago. Also groups according to the similarities of each studied stations was divided into 4 groups by similarity 50% because difference in them was considered to effect of domestic invasion species. In conclusion, three streams in the eastern Civilian Control Line of Korea were invaded by many alien fishes. Therefore, we are considered to require precise investigation and monitoring for the preparations to management measure.

Synergetics based damage detection of frame structures using piezoceramic patches

  • Hong, Xiaobin;Ruan, Jiaobiao;Liu, Guixiong;Wang, Tao;Li, Youyong;Song, Gangbing
    • Smart Structures and Systems
    • /
    • v.17 no.2
    • /
    • pp.167-194
    • /
    • 2016
  • This paper investigates the Synergetics based Damage Detection Method (SDDM) for frame structures by using surface-bonded PZT (Lead Zirconate Titanate) patches. After analyzing the mechanism of pattern recognition from Synergetics, the operating framework with cooperation-competition-update process of SDDM was proposed. First, the dynamic identification equation of structural conditions was established and the adjoint vector (AV) set of original vector (OV) set was obtained by Generalized Inverse Matrix (GIM).Then, the order parameter equation and its evolution process were deduced through the strict mathematics ratiocination. Moreover, in order to complete online structural condition update feature, the iterative update algorithm was presented. Subsequently, the pathway in which SDDM was realized through the modified Synergetic Neural Network (SNN) was introduced and its assessment indices were confirmed. Finally, the experimental platform with a two-story frame structure was set up. The performances of the proposed methodology were tested for damage identifications by loosening various screw nuts group scenarios. The experiments were conducted in different damage degrees, the disturbance environment and the noisy environment, respectively. The results show the feasibility of SDDM using piezoceramic sensors and actuators, and demonstrate a strong ability of anti-disturbance and anti-noise in frame structure applications. This proposed approach can be extended to the similar structures for damage identification.

Basic Study on the Performance of a Pressure-difference Control Damper Affected by Flow Disturbance in a Wind Tunnel (풍도 내 유동 교란과 자동차압 댐퍼의 성능 특성 기초 연구)

  • Yun, Yung-Min;Lee, Min-Jung;Kim, Nam-Il;Ryou, Hong-Sun
    • Fire Science and Engineering
    • /
    • v.23 no.6
    • /
    • pp.16-23
    • /
    • 2009
  • The performance characteristics of a smoke damper, which aims to suppress the penetration of smoke to a safe area, have been tested under the regulation of the FIS 001. However, the improvement of the test methods and the regulation has consecutively been requested. From a view-point of fluid mechanical theory, a pressure control damper, that is installed at the end of the flow control system, is important and it dominates flow characteristics in all designed flow systems. In this study, the weak points of the regulation of the FIS 001 concerned with the pressure control damper was visited and the some important characteristics of the damper was examined. Based on these results, it was confirmed that the effects of flow disturbance in the air supplying duct on the performance of the damper are not significant. This results gives some information for the modification of the experimental regulation concerned to the pressure control damper.

Study of Drive Control System for Ropeless Elevator (로프리스 엘리베이터 구동제어기 개발연구)

  • Kim, Youn-Hyun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3634-3641
    • /
    • 2012
  • This paper introduced a previous study which suggest ways to improve problems of drive control system of Ropeless Elevator when developing prior to commercialization of Ropeless Elevator. In particular, this study also manufactured motor, linear speed sensor and the miniature systems to study the implementation of the Ropeless Elevator drive. This study examined the problem of conventional PI controller through the speed control test and focused on the advanced controller based on disturbance observer for Ropeless Elevator drive. The results of this study confirmed the feasibility of the Ropeless Elevator and showed the satisfactory results of drive control techniques. This study also extracted many more problems that still need to be improved in the future for commercializing such as the sensor, high-performance controller, precision structures, safety devices and so on.