• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.023 seconds

Design of Robust Controller for Electromagnetic Suspension System with Kalman Filter (칼만 필터를 이용한 자기부상 시스템의 강인제어기 설계)

  • Jang, S.M.;Sung, S.Y.;Sung, H.K.;Jo, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.1411-1413
    • /
    • 2000
  • Distubance of air-gap sensors by rail irregularities are the serious problem deteriorating the performance in the electromagnetic suspension (EMS) systems. Thus, this paper proposes the output feedback controller with discrete kalman filter for the EMS systems. The discrete kalman filter estimate true state value and output feedback controller guarantee stability. The benefit of this scheme are shown by simulation. Therefore air-gap disturbance are rejected successfully.

  • PDF

Intelligent Control of Robot Manipulators by Learning (학습을 이용한 로봇 머니퓰레이터용 지능제어)

  • Lee DongHun;Kuc TaeYong;Chung ChaeWook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.4
    • /
    • pp.330-336
    • /
    • 2005
  • An intelligent control method is proposed for control of rigid robot manipulators which achieves exponential tracking of repetitive robot trajectory under uncertain operating conditions such as parameter uncertainty and unknown deterministic disturbance. In the learning controller, exponentially stable learning algorithms are combined with stabilizing computed error feedforward and feedback inputs. It is shown that all the error signals in the learning system are bounded and the repetitive robot motion converges to the desired one exponentially fast with guaranteed convergence rate. An engineering workstation based control system is built to verify the effectiveness of the proposed control scheme.

Dynamic control of mobile robots using a robust.adaptive learning control method (강인.적응학습제어 방식에 의한 이동로봇의 동력학 제어)

  • Nam, Jae-Ho;Baek, Seung-Min;Guk, Tae-Yong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.2
    • /
    • pp.178-186
    • /
    • 1998
  • In this paper, a robust.adaptive learning control scheme is presented for precise trajectory tracking of rigid mobile robots. In the proposed controller, a set of desired trajectories is defined and used in constructing the control input and learning rules which constitute the main part of the proposed controller. Stable operating characteristics such as precise trajectory tracking, parameter estimation, disturbance suppression, etc., are shown thorugh experiments and computer simulations.

  • PDF

An Expanded Robust Hybrid Control for Uncertain Robot Manipulators (불확실성을 포함한 로봇의 확장된 견실 하이브리드 제어)

  • Kim, Jae-Hong;Ha, In-Chul;Han, Myung-Chul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.980-984
    • /
    • 2001
  • When robot manipulatros as mathematically modeled. uncetainties may not be avoided. The uncertain factors come from imperfect knowledge of system parameters, payload change. friction, external disturbance and etc. In this work, we proposed a class of robust hybrid control of manipulatosrs. We propose a class of expanded robust hybrid control with the separated bound function and the simulation results are provided to show the effectiveness of the algorithm.

  • PDF

Position Control of a Stewart Platform Using Approximate Inverse Dynamics (근사역동역학을 이용한 스튜어트플랫폼의 위치제어)

  • Lee, Se-Han;Song, Jae-Bok;Park, Woo-Chun;Hong, Dae-Hui
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.7 no.12
    • /
    • pp.993-1000
    • /
    • 2001
  • Configuration-dependent nonlinear coefficient matrices in the dynamic equation of robot manipulator impose computa- tional burden in real-time implementation of tracking control based on the inverse dynamics controller. However, parallel manipulators such as Stewart platform have relatively small workspace compared to serial manipulators. Based on the characteristics of small motion range. nonlinear coefficient matrices can be approxiamted to constant ones. The modeling errors caused by such approximation are compensated for by H-infinity controller that treats the modeling errors disturbance. The proposed inverse dynamics controller with approximate dynamics combined with H-infinity control shows good tracking performance even for fast tracking control in which computation of full inverse dynamics is not easy to implement.

  • PDF

Thickness Control of Tandem Cold Mills Using Preview and $H_{\infty}$ Control Techniques (예견 및 $H_{\infty}$ 제어기법에 의한 연속 냉간 압연시스템의 두께 제어)

  • Kim, Sung-Su;Kim, Jong-Shik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.6 no.7
    • /
    • pp.529-536
    • /
    • 2000
  • A robust controller to attenuate the various disturbances of tandem cold mills (TCM) is synthesized by measurement-feedback $H_{\infty}$ control techniques which can reflect the input direction of disturbances and the knowledge of entry thickness variation (disturbance) is synthesized by discrete-time measurement-feedback $H_{\infty}$ control theory. It is demonstrated that the $H_{\infty}$ preview control gain can be easily obtained by the seperation principle of the control and estimation problems in $H_{\infty}$ control. Finally the effectiveness of the proposed control method for TCM is evaluated by the computer simulation and compared to the other control methods which have been previously studied.

  • PDF

Characteristics comparison according to operating mode of dynamically tuned gyroscope in the electro-optical tracking system (EOTS에서의 동조자이노스코프의 동작모드에 따른 특성비교)

  • Im, Sung-Woon;Ma, Jin-Suk;Kwon, Woo-Hyen
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.3
    • /
    • pp.311-317
    • /
    • 1997
  • DTG(dynamically tuned gyroscope) is a sensor detecting disturbance in angle velocity control loop of EOTS(electro optical tracking system), which is used for the stabilization of gimbal. DTG is classified into rate mode or rate integrated mode according to operating mode. In this paper, basic principles and characteristics of DTG, depending on to operating mode, are compared and the model of rate integrated mode DTG is proposed. Also, the validity of the presented model is verified by computer simulations and experiments.

  • PDF

Hybrid Sliding Mode Control of 5-link Biped Robot in Single Support Phase Using a Wavelet Neural Network (웨이블릿 신경망을 이용한 한발지지상태에서의 5 링크 이족 로봇의 하이브리드 슬라이딩 모드 제어)

  • Kim, Chul-Ha;Yoo, Sung-Jin;Choi, Yoon-Ho;Park, Jin-Bae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.11
    • /
    • pp.1081-1087
    • /
    • 2006
  • Generally, biped walking is difficult to control because a biped robot is a nonlinear system with various uncertainties. In this paper, we propose a hybrid sliding-mode control method using a WNN uncertainty observer for stable walking of the 5-link biped robot with model uncertainties and the external disturbance. In our control system, the sliding mode control is used as main controller for the stable walking and a wavelet neural network(WNN) is used as an uncertainty observe. to estimate uncertainties of a biped robot model, and the error compensator is designed to compensate the reconstruction error of the WNN. The weights of WNN are trained by adaptation laws that are induced from the Lyapunov stability theorem. Finally, the effectiveness of the proposed control system is verified through computer simulations.

Model Predictive Control of Condensate Recycle Process in a Cogeneration Power Station: I. Controller Design and Numerical Application (열병합 발전소의 응축순환공정에 대한 모델예측제어: I. 제어기 설계와 수치적 적용)

  • Won, Wang-Yun;Lee, Bong-Kook;Lee, Seung-Joo;Lee, Seok-Young;Lee, Kwang-Soon
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.12
    • /
    • pp.1202-1208
    • /
    • 2006
  • Development of a model predictive control(MPC) algorithm and its application to the condensate recycle process of a cogeneration power station has been conducted. The cogeneration power station has different characteristics from other industrial processes where MPC has been dominantly applied in that the operating mode changes continuously with seasons and we Ether. Such a characteristic makes it difficulty, a linearized model was derived from mass and pressure balances and linearization. The MPC algorithm has been developed so that the controller tuning is easy with one tuning knob for each output and the constrained optimization is solved by an interior point method. Performance of the MPC algorithm has been verified with the numerically simulated process under various disturbance scenarios and mode changes.

Analysis of Relationship between Body and Gimbal Motion Through Experiment of a Single-wheel Robot Based on an Inverse Gyroscopic Effect (외바퀴 로봇의 역자이로 효과에 의한 바디 모션과 김벌 모션의 실험을 통한 관계 분석)

  • Lee, Sang-Deok;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.11
    • /
    • pp.1064-1069
    • /
    • 2015
  • Control Moment Gyro (CMG) has been used as an indirect actuator of a single-wheel robot system GYROBO, developed at Chungnam National University. The flip motion of the gimbal system produces the gyroscopic motion onto the body system while the body motion also produces the gyroscopic motion onto the gimbal system inversely. In this paper, the intuitive equation of the inverse gyroscopic effect is derived as the direct relation between the rate of the body system and the rate of the gimbal system. Experiments on the inverse gyroscopic effect under the chaotically generated disturbance are conducted. Experimental data are approximated by a linear equation using the least square method.