• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.03 seconds

The use of load pressure feedback in designing the high performance electro-hydraulic speed controller for large inertia system (대부하 전기유압시스템의 부하압력 피이드백에 관한 연구)

  • 김영대;이대옥;심재운
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1987.10b
    • /
    • pp.358-363
    • /
    • 1987
  • It is widely noted that pressure feedback systems have been devised to damp the fluid resonance effectively in precision speed control-for large inertia system. A compensation technique preserving the natural output disturbance discrimination characteristics at lower frequencies is proposed The load pressure across positive displacement acceleration. The technique involves feeding back load differential pressure, sensed by pressure transducers, though a simple analog compensatory circuit (high pass filter). The effectiveness of the damping is determined by the filter time donstant and loop gain. Nonlinear total hydraulic simulation results verify the possibility of linear model predictions of extending the closed loop bandwidth beyond the uncompensated frequency.

  • PDF

Experimental Studies of Attitude Control of a Quad-rotor System using a Time-delayed Controller (시간지연 제어기를 이용한 쿼드로터 시스템의 자세제어의 실험적 연구)

  • Lim, Jeonggeun;Jung, Seul
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.4
    • /
    • pp.381-388
    • /
    • 2014
  • In this paper, the attitude of a quadrotor system is controlled by a time-delayed control method which uses the previous information to cancel out uncertainties in the system. Although the linear controller works for the attitude control, the robust performance against disturbance is relatively poor. Therefore, a time-delayed controller as a robust controller is used. Experimental studies are conducted to validate the performance by the time-delayed control method. The performances of both a linear controller and a time-delayed controller are compared.

CFWC Scheme for Width Control using CCD Measurement System and Fuzzy PID Controller in Hot Strip Mills (CCD 폭 측정 시스템 및 퍼지 PID를 이용한 CFWC 제어기 설계)

  • Park, Cheol Jae
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.11
    • /
    • pp.991-997
    • /
    • 2013
  • In this paper, we propose a CFWC (CCD and fuzzy PID based width control) scheme to obtain the desired delivery width margin of a vertical rolling mill in hot strip process. A WMS(width measurement system) is composed of two line scan cameras, an edge detection algorithm, a glitch filter, and so on. A dynamic model of the mill is derived from a gauge meter equation in order to design the fuzzy PID controller. The controller is a self-learning structure to select the PID gains from the error and error rate of the width margin. The effectiveness of the proposed CFWC is verified from simulation results under a width disturbance of the entry in the mill. Using a field test, we show that the performance of the width control is improved by the proposed control scheme.

Robust Control of Robot Manipulator with Actuators

  • Jongguk Yim;Park, Jong-Hyeon
    • Journal of Mechanical Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.320-326
    • /
    • 2001
  • A Robust controller is designed for cascaded nonlinear uncertain systems that can be decomposed into two subsystems; that is, a series connection of two nonlinear subsystems, such as a robot manipulator with actuators. For such systems, a recursive design is used to include the second subsystem in the robust control. The recursive design procedure contains two steps. First, a fictitious robust controller for the first subsystem is designed as if the subsystem had an independent control. As the fictitious control, a nonlinear H(sub)$\infty$ control using energy dissipation is designed in the sense of L$_2$-gain attenuation from the disturbance caused by system uncertainties to performance vector. Second, the actual robust control is designed recursively by Lyapunovs second method. The designed robust control is applied to a robotic system with actuators, is which the physical control inputs are not the joint torques, but electrical signals to the actuators.

  • PDF

Robust Time Delay Compensation for DTC-Based Induction Machine Systems via Extended State Observers

  • Wang, Fengxiang;Wang, Junxiao;Yu, Li
    • Journal of Power Electronics
    • /
    • v.18 no.3
    • /
    • pp.736-745
    • /
    • 2018
  • This paper presents an extended state observer (ESO) based direct torque control (DTC) for use in induction motor systems to handle the issues of time delays, load torque disturbances and parameter uncertainties. Direct torque control offers an excellent torque response and it does not require a proportion integration (PI) controller in the current loop. However, a PI controller is still adopted in the outer speed loop to generate the torque reference value, which is a slow method. An ESO based compound control scheme is proposed to improve the response rate and accuracy of the torque reference signal, especially when load torque is injected. In addition, the time delay problem is analyzed and compensated for in this paper to reduce torque ripples. The proposed disturbance compensation technique based direct control scheme is shown to have good performance both in the transient and stable states via simulations and experimental results.

A Tracking Control of the Hydraulic Servo System Using the Neuro-Fuzzy Controller (뉴로-퍼지 제어기를 이용한 유압서보시스뎀의 추적제어)

  • 박근석;임준영;강이석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.228-228
    • /
    • 2000
  • To deal with non-linearities and time-varying characteristics of hydraulic systems, in this paper, the neuro-fuzzy controller has been introduced. This controller does not require an accurate mathematical model for the nonlinear factor. In order to solve general fuzzy inference problems, the input membership function and fuzzy reasoning rules are used for determining the controller Parameters. These parameters are determined by using the learning algorithm. The control performance of the neuro-fuzzy controller is obtained through a series of experiments for the various types of input while applying disturbances to the cylinder. .and performance of this controller was compared with that of PID, PD controller. As a experimental result, it can be proven that the position tracking performance of the neuro-fuzzy is better than that of PID and PD controller.

  • PDF

Design of the Position Control System for a Nonlinear Multivariable Launcher (비선형 다변수 발사대의 위치 제어시스템 설계)

  • Kim, Jong-Shik;Han, Seong-Ik;Sim, Woo-Jeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.9 no.4
    • /
    • pp.154-166
    • /
    • 1992
  • A kinematic nonlinear multivariable launcher is modeled of which the azimuth and elevation axes are drived simultaneously and position control systems are designed for this system by the PD and LQG/LTR control methods. Also, the suitable command input fonction is suggested for the desired command following performance and the two control systems with disturbances and load variation are evaluated for the entire operating range by computer simulation. It is found that the two linear controllers can be used for the kinematic nonlinear multivariable launcher in the entire operating range and LQG/LTR controller is more effective for disturbance rejection.

  • PDF

Robust Control of Disturbed Magnetic Bearing Rotor Systems (외란을 받는 자기베어링 주축계의 강건제어)

  • 강호식;송오섭
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.13 no.2
    • /
    • pp.40-46
    • /
    • 2004
  • Magnetic bearing has been adopted to support a rotor by electromagnetic force without mechanical contact and lubrication process. The recent growth of magnetic bearing applications in many industrial fields requires more accurate design of bearing-rotor system. Due to external forces and uncertainties of magnetic bearing system the actual performance and stability my be worse than it is designed. This paper describes the governing equations of rotor magnetic bearing systems and/or the designing of robust controller via standard $H_{\infty}$ control problem. The system stability and response characteristics are studied by simulations and verified with experimental results.

Time-Delay Control for Integrated Missile Guidance and Control

  • Park, Bong-Gyun;Kim, Tae-Hun;Tahk, Min-Jea
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.12 no.3
    • /
    • pp.260-265
    • /
    • 2011
  • In this paper, integrated missile guidance and control systems using time-delay control (TDC) are developed. The next generation missile requires that an interceptor hits the target, maneuvering with small miss-distances, and has lower weight to reduce costs. This is possible if the synergism existing between the guidance and control subsystems is exploited by the integrated controller. The TDC law is a robust control technique for nonlinear systems, and it has a very simple structure. The feature of TDC is to directly estimate the unknown dynamics and the unexpected disturbance using one-step time-delay. To investigate the performance of the integrated controller, numerical simulations are performed as the maneuver of the target. The results show that the integrated guidance and control system has a good performance.

Design of Gain Scheduled Controllers for Linear Systems with Saturating Actuators (포화 구동기를 갖는 선형 시스템의 이득 스케듈링 제어기 설계)

  • 송용희;김진훈
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.9
    • /
    • pp.511-519
    • /
    • 2003
  • In this paper, we considered the design of gain scheduled controllers for linear systems with saturating actuators. Our basic idea is to design a control that uses higher control gain when the states are smaller, and lower gain when it is higher. By doing this, we can avoid the saturation and we can improve the performance. First, we derive a control and a reachable set expressed as LMI form, which minimizes not only the L$_2$ gain from the disturbance to the measured output but also the control is never saturated within this reachable set. Next, the reachable set is divided as nested subsets, and at each nested subset, the control gain is designed to minimize the L$_2$ gain and it is never saturated. Finally, the control gain is scheduled according to the status of states, i.e., the subset in which the states are located. A numerical example is presented to show that our gain scheduled control significantly improves the performance.