• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.032 seconds

Design and implementation of a throttle valve controller for engine dynamometer systems using fuzzy logic (퍼지논리를 사용한 엔진 동력계 시스템의 트로틀 밸브 제어기 설계 및 구현)

  • Shin, Wee-Jae;Lee, Sang-Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.6
    • /
    • pp.588-593
    • /
    • 1997
  • This paper shows a design and implementation of throttle valve controller for engine dynamometer system using fuzzy logic. Recently, we demanded the excellent measuring equipment so as to improve engine performance. The throttle valve control for engine dynamometer system is a very particular part in the engine control. Since the structure of engine dynamometer system is very complicated and has nonlinear elements which are influenced by disturbance of vibration, heating, cooling, and energy loss so on. In this paper, fuzzy logic control application have been successful in throttle valve control problem for engine dynamometer system in which the conventional control had difficulties dealing with the system. In this study, we propose a method that the control strategy uses Fuzzy Look-up table and normalization and obtained the satisfying result from realized throttle valve controller for engine dynamometer system.

  • PDF

A New Flux Tracking LVRT Control Scheme for Doubly Fed Induction Generators

  • Park, Sun-Young;Ahn, Hyung-Jin;Lee, Dong-Myung
    • Journal of international Conference on Electrical Machines and Systems
    • /
    • v.2 no.3
    • /
    • pp.306-312
    • /
    • 2013
  • Doubly fed induction generator (DFIG) systems widely used globally are highly sensitive to the grid disturbance due to the structure that the stator is connected to the grid. In the past, when a grid fault occurs in order to prevent a system, generators are separated from the grid regardless of the fault duration time. Recently, however, the grid connection standards(Grid Code)says that for the failures removed within a certain time, the generator remains operation without separating from the grid. This paper proposes a new flux tracking LVRT(Low-Voltage Ride Through) control based on system modeling equations. The validity of the proposed strategy has been demonstrated by computer simulations.

Control characteristics of a refrigerant compressor test facility (냉매압축기 성능시험장치의 제어 특성)

  • Lee, J. Y.;Lee, D. Y.;Kim, K. H.;Nam, P. W.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.46-51
    • /
    • 1999
  • This paper describes the control charcteristics of thermal/flow systems. In thermal/flow systems, the transport lag plays as a dead time causing a deterioration of the controllability. Besides this, such many parameters including the temperature, pressure, and flow rate affect the system response that a control scheme which can deal with multi-input is required. Particularly in a refrigerant compressor test facility, the evaporator and condenser interact each other so that the change in the evaporator pressure cause the condenser pressure to change or vice versa. Therefore, to control the evaporator pressure, not only the cooling water flow rate in the evaporator but also the coolant flow rate in the condenser is considered. Meanwhile, the conventional PID controllers, which is suitable for a single input system, shows a large overshoot for a disturbance input. In this work, the predictive control scheme is introduced and its applicability is discussed for thermal/flow systems.

  • PDF

Design of an Output Feedback Variable Structure Control System (출력궤환 가변구조 제어계의 설계에 관한 연구)

  • 이기상;조동식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.41 no.8
    • /
    • pp.883-892
    • /
    • 1992
  • In order to remove the assumption of full state availability which is one of the major difficulties with the practical realization of variable structure control system (VSCS), an output feedback variable structure control scheme for multivariable systems is proposed. The proposed output feedback VSCS is composed of a switching surfaces with dynamic structure and a new output feedback control input that can be constructed by using conventional output feedback control input design methodologies. With the proposed scheme, the practical realization of VSCS for the systems with unmeasurable states and for high order systems that conventional schemes cannot be applied is possible. Simulation results show that proposed scheme is a viable method to achieve the desired control performance, for example, good transient response, robustness against process parameter variations and external disturbance without measuring all the state variables.

Force Synchronizing Control for 4 Axes Driven Hydraulic Cylinder-Clamping Load Systems (4축 구동 유압실린더-클램핑 부하 시스템의 힘 동기제어)

  • Cho, S.H.
    • Journal of Drive and Control
    • /
    • v.11 no.2
    • /
    • pp.9-15
    • /
    • 2014
  • This paper deals with the issue of force synchronizing control for the clamping servomechanism of injection molding machines. Prior to the controller design, a virtual design model has been developed for the clamping mechanism with hydraulic systems. Then, a synchronizing controller is designed and combined with an adaptive feedforward control in order to accommodate the mismatches between the real plant and the linear model plant used. As a disturbance, the leakage due to the ring gap with relative motion in the cylinder has been introduced. From the robust force tracking simulations, it is shown that a significant reduction in the force synchronizing error is achieved through the use of a proposed control scheme.

Internal Model Control for Unstable Overactuated Systems with Time Delays

  • Mahmoud, Ines;Saidi, Imen
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.1
    • /
    • pp.64-69
    • /
    • 2021
  • In this paper, we have proposed a new internal model control structure (IMC). It is aimed at unstable overactuated multivariable systems whose transfer matrices are singular and unstable. The model inversion problem is essential to understand this structure. Indeed, the precision between the output of the process and the setpoint is linked to the quality of the inversion. This property is preserved in the presence of an additive disturbance at the output. This inversion approach proposed in this article can be applied to multivariable systems with no minimum phase or minimum phase shift with or without delays in their transfer matrices. It is proven by an example of simulation through which we have shown its good performance as a guarantee of stability, precision as well as rapidity of system responses despite the presence of external disturbances and we have tested this control structure in the frequency domain hence the robustness of the IMC.

Accurate Control Position of Belt Drives under Acceleration and Velocity Constraints

  • Jayawardene, T.S.S.;Nakamura, Masatoshi;Goto, Satoru
    • International Journal of Control, Automation, and Systems
    • /
    • v.1 no.4
    • /
    • pp.474-483
    • /
    • 2003
  • Belt drives provide freedom to position the motor relative to the load and this phenomenon enables reduction of the robot arm inertia. It also facilitates quick response when employed in robotics. Unfortunately, the flexible dynamics deteriorates the positioning accuracy. Therefore, there exists a trade-off between the simplicity of the control strategy to reject time varying disturbance caused by flexibility of the belt and precision in performance. Resonance of the system further leads to vibrations and poor accuracy in positioning. In this paper, accurate positioning of a belt driven mechanism using a feed-forward compensator under maximum acceleration and velocity constraints is proposed. The proposed method plans the desired trajectory and modifies it to compensate delay dynamics and vibration. Being an offline method, the proposed method could be easily and effectively adopted to the existing systems without any modification of the hardware setup. The effectiveness of the proposed method was proven by experiments carried out with an actual belt driven system. The accuracy of the simulation study based on numerical methods was also verified with the analytical solutions derived.

MR rotary brake development with permanent magnet (자기 유변 유체와 영구 자석을 이용한 회전 엑츄에이터의 개발)

  • 권순우;박영진
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.183-186
    • /
    • 1997
  • This paper presents the new MR rotary brake with a permanent magnet, based on the shear operating mode. Due to the permanent magnet, the MR rotary brake can give the nominal resistance to the external disturbance and give the fail safe capacity to the system even when the power supply is accidentally cut off. As we apply the positive or negative current to the electric magnet coil, the resistance torque of the MR rotary brake can be reduced to the value less than the nominal resistance or increased up to the magnetic saturation point.

  • PDF

Adaptive-learning control of vehicle dynamics using nonlinear backstepping technique (비선형 백스테핑 방식에 의한 차량 동력학의 적응-학습제어)

  • 이현배;국태용
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.636-639
    • /
    • 1997
  • In this paper, a dynamic control scheme is proposed which not only compensates for the lateral dynamics and longitudinal dynamics but also deal with the yaw motion dynamics. Using the dynamic control technique, adaptive and learning algorithm together, the proposed controller is not only robust to disturbance and parameter uncertainties but also can learn the inverse dynamics model in steady state. Based on the proposed dynamic control scheme, a dynamic vehicle simulator is contructed to design and test various control techniques for 4-wheel steering vehicles.

  • PDF

A study on the application of the intelligent control algorithms to the flow control system (유량제어계통에 대한 지능형 제어 알고리즘 적용연구)

  • 김동화;조일인
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1997.10a
    • /
    • pp.1792-1795
    • /
    • 1997
  • It is difficulte to control in the flow system because there are many disturbance. So it is impossible to control delicately sometimes by PI or PID. In this paper, we study on the application of intellignet control algorithms such as 2DOF PID control, neural network, Fuzzy contro, Relay feedback to the flow control system. the resultings are 2DOF-PID control is more good response.

  • PDF