• Title/Summary/Keyword: disturbance systems

Search Result 1,158, Processing Time 0.031 seconds

Adaptive Observer for a System with Sinusoidal Disturbance in Measurement Output (측정 출력에 삼각함수 외란이 포함된 시스템의 적응 관측기)

  • Son, Young-Ik;Kim, In-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.5
    • /
    • pp.966-971
    • /
    • 2010
  • An adaptive state observer is presented for a class of LTI systems that have a sinusoidal disturbance in the measurement output. Adaptation rules are developed for identifying the unknown sinusoidal disturbance signal from the system output. For the application of the identification result to the state estimation problem, the sinusoidal signal with arbitrary initial phase has been considered in this paper. In order to test the performance of proposed algorithm, comparative computer simulations have been carried out with an existing robust observer. The simulation results show the effectiveness of the proposed method.

Disturbance Compensation Control in Active Magnetic Bearing Systems by Filtered-x LMS Algorithm (전자기베어링에서 Filtered-x LMS 알고리즘을 이용한 외란보상 제어기 설계)

  • 강민식;강윤식;이대옥
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.447-450
    • /
    • 2003
  • This paper concerns on application of active magnetic bearing(AMB) system to levitate the elevation axis of an electro-optical sight mounted on moving vehicles. In such a system. it is desirable to retain the elevation axis within the predetermined air-gap while the vehicle is moving. A disturbance compensation control is proposed to reduce the base motion response. In the consideration of the uncertainty of the system model, a filtered-x least-mean-square(FXLMS) algorithm is used to estimate adaptively the frequency response function of the feedforward control which cancels disturbance responses. The frequency response function is fitted to an optimal feedforward control. Experimental results demonstrate that the proposed control reduces the air-gap deviation to 27.7% that by feedback control alone.

  • PDF

A Disturbance Observer-Based Robust Controller Against Load Variations in a Single Phase DC/AC Inverter System (단상 DC/AC 인버터 시스템의 부하변동을 고려한 외란 관측기 기반 제어기)

  • Kim, Sung-Jong;Son, Young-Ik;Jeong, Yu-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.110-112
    • /
    • 2007
  • Output voltage waves of a DC/AC inverter system are likely to be distorted if variable loads e.g. motors or rectifiers exist in the output terminal. This paper designs a disturbance observer-based PI controller for a single-phase inverter system that is robust against load changes. In this paper, we regard the output voltage changes due to various loads as disturbances of the control system, Then we design a disturbance observer for estimation of the disturbances caused by the load current and any other error sources (such as parameter uncertainties and model mismatches etc.). In order to test the performance of the proposed control law, simulation studies are carried out for a single-phase inverter system using SimPowerSystems of Matlab Simulink. Compared to a simple PI control, the disturbance observer-based controller shows enhanced performance in transient responses for step load changes.

  • PDF

Design of a Speed Controller for 2-Mass System Based on Neural Network and Observer (신경 회로망과 관측기에 기반한 2-mass 시스템에서의 속도 제어기 설계)

  • 현대성;박정일
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.361-361
    • /
    • 2000
  • In the 2-mass system with flexible shaft, a torsional vibration is often generated because of the elastic elements in torque transmission as the newly required speed response which is very close to the primary resonant frequency. This vibration makes it difficult to achieve quick responses of speed and disturbance rejection. In this paper, 2-mass system is designed by using pole placement based on optimal control theory fur fast speed response and torsional vibration elimination and using neural network for disturbance rejection in particular. The simulation results show that the proposed controller based on neural network and full state feedback controller has better performance than 려ll state feedback controller, especially fur disturbance rejection.

  • PDF

Anti-Sway Control of the Overhead Crane System using HOSM Observer

  • Kwon, Dongwoo;Eom, Myunghwan;Chwa, Dongkyoung
    • Journal of Electrical Engineering and Technology
    • /
    • v.11 no.4
    • /
    • pp.1027-1034
    • /
    • 2016
  • This paper proposes a sum of squares (SOS) method for anti-swing control of overhead crane system using HOSM (High-Order Sliding-Mode) observer. By representing the dynamic equations of overhead crane as the polynomial dynamic equations via Taylor series expansion, the control input is obtained from the converted polynomial dynamic equations by numerical tool SOSTOOL. Since the actual crane systems include disturbance such as wind and friction, we propose a method to compensate for the disturbance by estimating the disturbance using HOSM observer. Numerical simulations show the effectiveness and the applicability of the proposed method.

Disturbance Observer-based Current Measurement Offset Error Compensation in Vector-controlled SPMSM Drives (표면 부착형 동기 전동기 벡터 제어에서의 외란 관측기 기반 전류 측정 오프셋 오차 보상 방법)

  • Lee, Sang-Min;Lee, Kibok
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.27 no.5
    • /
    • pp.402-409
    • /
    • 2022
  • In vector-controlled drive systems, the current measurement offset error causes unwanted torque ripple, resulting in speed and torque control performance degradation. The current measurement offset error is caused by various factors, including thermal drift. This study proposes a simple DC offset error compensation method for a surface permanent magnet motor based on a disturbance observer. The disturbance observer is designed in the stationary reference frame. The proposed method uses only the measured current and machine parameters without additional hardware. The effect of parameter variations is analyzed, and the performance of the current measurement offset error compensation method is validated using simulation and experimental results.

Attitude determination of cubesat during eclipse considering the satellite dynamics and torque disturbance (인공위성의 동역학과 토크 외란을 고려한 큐브위성의 식 기간 자세추정)

  • Choi, Sung Hyuk;Kang, Chul Woo;Park, Chan Gook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.4
    • /
    • pp.298-307
    • /
    • 2016
  • Attitude determination of satellite is categorized by deterministic and recursive method. The recursive algorithm using Kalman filter is widely used. Cubesat has limitation for payload to minimize then only two attitude sensors are installed which are sun sensor and magnetometer. Sun sensor measurements are useless during eclipse, however cubesat keeps estimating attitude to complete the successful mission. In this paper, Attitude determination algorithm based on Kalman filter is developed by additional term which considering the dynamics for SNUSAT-1 with disturbance torque. Verification of attitude accuracy of the algorithm is conducted during eclipse. Attitude determination algorithm is simulated to compare the performance between typical method and proposed algorithm. In addition, Attitude errors are analysed with various magnitude of disturbance torque caused by space environment.

Tracking Position Control of DC Servo Motor in LonWorks/IP Network

  • Song, Ki-Won;Choi, Gi-Sang;Choi, Gi-Heung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.186-193
    • /
    • 2008
  • The Internet's low cost and ubiquity present an attractive option for real-time distributed control of processes on the factory floor. When integrated with the Internet, the LonWorks open control network can give ubiquitous accessibility with the distributed control nature of information on the factory floor. One of the most important points in real-time distributed control of processes is timely response. There are many processes on the factory floor that require timely response. However, the uncertain time delay inherent in the network makes it difficult to guarantee timely response in many cases. Especially, the transmission characteristics of the LonWorks/IP network show a highly stochastic nature. Therefore, the time delay problem has to be resolved to achieve high performance and quality of the real-time distributed control of the process in the LonWorks/IP Virtual Device Network (VDN). It should be properly predicted and compensated. In this paper, a new distributed control scheme that can compensate for the effects of the time delay in the network is proposed. It is based on the PID controller augmented with the Smith predictor and disturbance observer. Designing methods for output feedback filter and disturbance observer are also proposed. Tracking position control experiment of a geared DC Servo motor is performed using the proposed control method. The performance of the proposed controller is compared with that of the Internal Model Controller (IMC) with the Smith predictor. The result shows that the performance is improved and guaranteed by augmenting a PID controller with both the Smith predictor and disturbance observer under the stochastic time delay in the LonWorks/IP VDN.

A Design of Model Predictive Control and Nonlinear Disturbance Observer-based Backstepping Sliding Mode Control for Terrain Following (지형 추종을 위한 모델 예측제어와 비선형 외란 관측기를 이용한 백스테핑 슬라이딩 모드 제어기법 설계)

  • Dongwoo Lee;Kyungwoo Hong;Chulsoo Lim;Hyochoong Bang;Dongju Lim;Daesung Park;Kihoon Song
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.27 no.4
    • /
    • pp.495-506
    • /
    • 2024
  • In this study, we propose the terrain following algorithm using model predictive control and nonlinear disturbance observer-based backstepping sliding mode controller for an aircraft system. Terrain following is important for military missions because it helps the aircraft avoid detection by the enemy radar. The model predictive control is used to replace the generating trajectory and guidance with the flight path angle constraint. In addition, the aircraft is affected to the parameter uncertainty and unknown disturbance such as wind near the mountainous terrain. Therefore, we suggest the nonlinear disturbance-based backstepping sliding mode control method for the aircraft that has highly nonlinearity to enhance flight path angle tracking performance. Through the numerical simulation, the proposed method showed the better tracking performance than the traditional backstepping method. Furthermore, the proposed method presented the terrain following maneuver maintaining the desired altitude.

Application of a TDOF controller to chaotic dynamical systems

  • Kameda, T.;Aihara, K.;Hori, Y.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1549-1552
    • /
    • 1991
  • We apply a TDOF ( Two Degrees of Freedom) robust controller to chaotic systems. We show that the TDOF robust controller is effective not only for rejection of chaotic disturbance but also for control of a chaotic plant.

  • PDF