• Title/Summary/Keyword: disturbance system

Search Result 2,376, Processing Time 0.026 seconds

A Case of Korean Medical Treatment on Advanced-Stage Multiple System Atrophy with Gait Disturbance (보행장애를 호소하는 말기 다계통 위축증 환자 한의 치험 1례)

  • Hwang, Ye-Chae;Lee, Hye-Jin;Choi, Jeong-Woo;Jeon, Gyu-Ri;Park, Seong-Uk;Park, Jung-Mi;Ko, Chang-Nam;Cho, Seung-Yeon
    • The Journal of the Society of Stroke on Korean Medicine
    • /
    • v.22 no.1
    • /
    • pp.31-44
    • /
    • 2021
  • The purpose of this case report is to describe the effectiveness of Korean medicine in the treatment of gait disturbance in advanced stage multiple system atrophy-cerebellar type (MSA-C). This inpatient was treated with herbal medicine, acupuncture, pharmaco-acupuncture, moxibustion, cupping, and chuna therapy. The gait disturbance was assessed by Unified Multiple System Atrophy Rating Scale(UMSARS), Tinnetti test, and 16m walking spatial features. After treatment, UMSARS Part I score was enhanced, decreasing from 29 to 24, Part II score from 34 to 18. Tinetti test score increased from 7 to 20. Gait stride length increased and width decreased. This study suggests that Korean medical treatment could be an effective treatment for delaying the progress of gait disturbance in advanced-stage MSA-C patients.

Neural Network Based Disturbance Canceler with Feedback Error Learning for Nonholonomic Mobile Robots

  • Izumi, Kiyotaka;Syam, Rafiuddin;Watanabe, Keigo;Kiguchi, Kazuo
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2003.09a
    • /
    • pp.443-446
    • /
    • 2003
  • Conventional disturbance rejection methods have to derive the inverse model of a system. However, the inverse model of n nonholonomic system is not unique, because an inverse it changes depending on initial conditions and desired values. A kind of internal model control (IMC) using feedback error learning is discussed for the motion control of nonholonomic mobile robots in this paper, The present method is different from a conventional IMC whose control system consists of an inverse model, a direct model and a filter. The present disturbance rejection method need not use a direct model, where the remaining two elements are composed of the same inverse model based on neural networks.

  • PDF

Disturbance Observer- Based Sliding Mode Control for the Precise Mechanical System with the Bristle Friction Model

  • Han, Seong-Ik
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.4 no.5
    • /
    • pp.5-14
    • /
    • 2003
  • Tracking control schemes on the precise mechanical system in presence of nonlinear dynamic friction is proposed. A nonlinear dynamic friction is regarded as the bristle friction model to compensate fer effects of friction. The conventional SMC method often shows poor tracking performance in high-precision position tracking application since it cannot completely compensate for the friction effect below a certain precision level. Thus to improve the precise position tracking performance, we propose the SMC method combined with the disturbance observer having tunable transient performance. Then this control scheme has the high precise tracking peformance as well as a good transient response when it is compared with the conventional SMC method and the similar types of observers, The experiment on the XY ball-screw drive system with the nonlinear dynamic friction confirms the feasibility of the proposed control scheme.

차량 능동 현가장치의 혼합제어기 설계

  • 한기봉;이시복
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1993.10a
    • /
    • pp.293-298
    • /
    • 1993
  • In ground vehicles, the increasing demand for safety and ride comfort which are trade-off relation, especially at high speeds, has led to the development od actively controlled suspensions. The LQG/LTR controller can be used to design a robust feedback control system that deals with disturbance rejection properties as well as insensitivity to modelling errors and sensor noise. And when the disturbance can not be measured but is limited within a certain frequency range, a bandpass feedback to eliminate the disturbance response can be used. In this paper, hybrid controller cosisted of bandpass feedback controller and LQG/LTR controller is applied to a quarter-car model moving on a randomly profiled road. The random road profile considered as colored noise is shaped from white noise by use of shaping filter. The performance of the hybrid control system is compared with that of an LQG/LTR controlled system.

  • PDF

Disturbance Compensation Control of An Active Magnetic Bearing System by Multiple FXLMS Algorithm - Theory (MFXLMS 알고리즘을 이용한 전자기배어링계의 외란 보상 제어기 - 이론)

  • 강민식;정종수
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.2
    • /
    • pp.74-82
    • /
    • 2004
  • In this paper, a disturbance feedforward compensator design technique is proposed for an active magnetic bearing system subject to base motion for attenuating disturbance responses. In the consideration of the requirements on the model accuracy in the model based compensator designs, an experimental feedforward compensator design based on adaptive estimation by means of the Multiple Filtered-x least mean square(MFXLMS) algorithm is proposed. The performance and the effectiveness of the proposed technique will be presented in the succeeding paper in which the proposed technique is applied to a 2-DOF active magnetic bearing system subject to base motion.

A Disturbance Observer-Based Output Feedback Controller for a DC/DC Boost Converter with Load Variation (부하변동을 고려한 DC/DC 승압형 컨버터의 외란 관측기 기반 출력 궤환 제어기)

  • Jeong, Goo-Jong;Kim, In-Hyuk;Son, Young-Ik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.7
    • /
    • pp.1405-1410
    • /
    • 2009
  • Output voltage of a DC/DC power converter system is likely to be distorted if variable loads exist in the output terminal. This paper presents a new disturbance observer(DOB) approach to maintain a robust regulation of the output voltage of a boost type DC/DC converter. Unlike the buck-type converter case, the regulation problem of the boost converter is very complicated by the fact that, with respect to the output voltage to be regulated, the system is non-minimum phase. Owing to the non-minimum phase property the classical DOB approach has not been applied to the boost converter. Motivated by a recent result on the application of DOB to non-mimimum phase system, an output feedback control law is proposed by using a parallel feedforward compensator. Simulation results using the Simulink SimPowerSystems prove the performance of the proposed controller against load variation.

Reference Model Feedback Control and Stability Evaluation for Control System with Hard Non-linearities (견비선형을 갖는 제어시스템에 대한 기준모델 피드백제어 및 안정성평가)

  • Jung, Yu-Chul;Lee, Gun-Bok
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.15 no.5
    • /
    • pp.72-78
    • /
    • 2006
  • The paper proposes reference model error feedback control scheme for motion control system with hard non-linear components as like saturation and dead-zone in plant input part. Additionally, the plant has the system uncertainty effected by plant model parameter deviation and disturbance. The control algorithm uses the reference model to apply additional feedback loop with the error between reference model output and actual output effected by disturbance and non-linear components. And the stability evaluation based on Popov stability and controller design method are formulated to be performed. The effectiveness of the proposed scheme is examined by simulations. The results are proven by reasonable performances following reference model responses with good disturbance rejection performance without over-tuning of controller.

Design of a Reduced-Order Disturbance Observer Controller for EMS System with Mass Uncertainty (무게변동을 고려한 자기부상시스템의 저차 외란관측기 제어기 설계)

  • Jo, Nam-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.5
    • /
    • pp.812-818
    • /
    • 2017
  • In this paper, we design a reduced-order disturbance observer (DOB) controller for an EMS (Electro-Magnetic Suspension) system with mass uncertainty. Compared with conventional DOB controller, the proposed reduced-order DOB controller can be implemented in a simpler way, since it uses reduced order nominal model and Q-filter. It is shown that the nominal model for the proposed DOB controller should be carefully chosen in order to achieve the robust stability in the present of mass uncertainty. Computer simulation results to validate the effectiveness of the proposed DOB controller are included.

Robust Adaptive Position Control for Servomotor Drive Using Fuzzy-neural Networks (퍼지 뉴럴 네트워크를 이용한 서보모터 드라이브의 강인 적응 위치 제어)

  • Hwang, Young-Ho;Lee, An-Yong;Kim, Hong-Pil;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2006.07d
    • /
    • pp.1834-1835
    • /
    • 2006
  • A robust adaptive position control algorithm is proposed for servomotor drive system with uncertainties and load disturbance. The proposed controller is comprised of a nominal controller and a robust control. The nominal controller is designed in the condition without all the external load disturbance, nonlinear friction and unpredicted uncertainties. The robust controller containing lumped uncertainty approximator using fuzzy-neural network(FNN) is designed to dispel the effect of uncertainties and load disturbance. The interconnection weight of the FNN can be online tuned in the sense of the Lyapunov stability theorem thus asymptotic stability of the proposed control system can be guaranteed. Finally, simulation results verify that the proposed control algorithm can achieve favorable tracking performance for the induction servomotor drive system.

  • PDF

Robust Speed Control of AC Permanent Magnet Synchronous Motor using RBF Neural Network (RBF 신경회로망을 이용한 교류 동기 모터의 강인 속도 제어)

  • 김은태;이성열
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.40 no.4
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper, the speed controller of permanent-magnet synchronous motor (PMSM) using the RBF neural (NN) disturbance observer is proposed. The suggested controller is designed using the input-output feedback linearization technique for the nominal model of PMSM and incorporates the RBF NN disturbance observer to compensate for the system uncertainties. Because the RBF NN disturbance observer which estimates the variation of a system parameter and a load torque is employed, the proposed algorithm is robust against the uncertainties of the system. Finally, the computer simulation is carried out to verify the effectiveness of the proposed method.