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Abstract— Conventional disturbance rejection methods have to
derive the inverse model of a system. However, the inverse model
of a nonholonomic system is not unique, because an inverse
it changes depending on initial conditions and desired values.
A kind of internal model control (IMC) using feedback error
learning is discussed for the motion control of nonholonomic
mobile robots in this paper. The present method is different
from a conventional IMC whose control system consists of
an inverse model, a direct model and a filter. The present
disturbance rejection method need not use a direct model, where
the remaining two elements are composed of the same inverse
maedel based on neural networks.

1. INTRODUCTION

1t is the feature of nonholonomic systems, that the number
of control inputs is less then the degree of freedom of the
svstem. The conventional control approaches to nonholonomic
svstems are exact linearization, chained form method, back-
stepping method[1], and neural networks approach[2]. In the
control of the driving wheel type mobile robot with nonholo-
nomic constraint, Fukao et al. [1] combines a kinematic con-
troller and a torque controller using back-stepping approach.
Fierro[2] recommends the use of a velocity tracking inner loop,
and proposes the online compensator with neural networks.

On the other hand, the internal model control (IMC) was
proposed to cancel the disturbance for nonlinear systems[3],
{4]. [5]. The structure of the IMC is simple. Components of
the IMC are the internal model, the filter, and the controller.
Theoretically, if we obtain the accurate inverse model of the
svstem, then the disturbance is canceled wholly using the IMC.
Hawever, we can’t obtain the unique inverse model of the
nonholonomic systems.

One of attractive approaches is the neuro interface[6], in
waich the learning mechanism of neural networks consists of
the specialized learning. This method shows efficient results
w:th application for the trailer control. This control system is
censtructed with the controller, the reference model and the
filter. The structure of this method is quite similar to IMC.
Uafortunately, any relation between neuro interface and IMC
is not discussed in the paper{6].

In this paper, we propose a neuro interface-like control
svstem using the concept of IMC. Nonholonomic system does
n:t have an unique inverse model. However the present method
need not use the accurate inverse model. The neural network is

Fig. 1. Block diagram of IMC

Fig. 2. Training of an inverse model of neuro interface

here trained by the feedback error learning. The effectiveness
of the proposed method is shown by applying it for the mobile
robot with two independent driving wheel.

II. INTERNAL MobeL CoNTROL

If the nonlinear system 1is stable, the IMC is the effective
control method. The IMC concept is illustrated in Fig. 1, where
ya 1s the desired value, y is the output of the system, e is the
error between y; and y, and d is the disturbance. F is the filter,
C is the controller, P is the plant, and M is the model of the
plant. The advantages of the IMC are as follows:

« If the plant including C and d is stable and we can use M,
then the closed-loop system becomes input-output stable.

« If C is equivalent with P~', then it is compensated such
that y becomes y;.

« If C is equivalent with M~!, then the closed-loop system
becomes input-output stable.

In order to apply the above features, it is very important to
obtain an inverse model M~! that is input-output stable and to
acquire the model M =~ P.
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Fig. 3. Neuro interface and disturbance canceler

Fig. 4. Training of a filter Q

III. NEeuro INTERFACE

Neuro interface is one of control approaches using neural
networks for nonlinear systems[6]. The approach is developed
for interface system of complex and nonlinear systems. The
neuro interface is trained by Fig. 2, where M, is the reference
model, C is the neuro controller, P* is the stabilized plant,
¥a is the desired value, y, is the output of M, and y is the
output of the stabilized plant. C is trained by the specialized
learning method, in which the teaching signal is y,. Therefore,
we obtain the following relationships:

y = My, (1)
y = Pu )
= PCyq 3
= P'CMly,. )
The controller has to become
C=P"'M, )

to assure y, = y. Thus, the neuro mapping should be acquired
as the product between the inverse plant P*! and the reference
model M,.

The disturbance cancel system by neuro interface system
using the trained controller is illustrated by Fig. 3, where Q is
the filter. Q has to be trained by specialized learning illustrated
in Fig. 4, where the teaching signal is y,. In theory, Q has to
become P*~!. If the plant is a linear system, the neuro interface
becomes the optimal disturbance cancel system. Unfortunately,
the optimality of the neuro interface is not assured in the
nonlinear system. Nevertheless, the neuro interface is shown to
be effective in the nonlinear system from simulation results[6].
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Fig. 5. Training of an inverse model through feedback error learning
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Fig. 6. Block diagram of disturbance cancel control using feedback error
learning architecture

IV. DisturBANCE CANCELER WITH FEEDBACK ERROR LEARNING

We propose a disturbance canceler system using the feed-
back error leaning for the nonholonomic system. The concept
is similar to IMC, but we extend the concept of IMC to
apply for the nonholonomic system. The proposed system is
trained by the feedback error learning illustrated in Fig. S.
To stabilize the plant P, any approach is acceptable for the
feedback controller FC. In the sequel, the control system is
reduced to one shown in Fig. 6 using the trained C in Fig.
S. In the present method, there is no internal model, which is
slightly different from IMC. In fact, the structure consists of
the filter and the controller.

From Fig. 6, we obtain

y = Plugs+ug) 6)
n = y+4yd) )
Upp = Ce
= COa—y-Ayd)
= C(a— Puss — Pugp, — Ay(d)) ®)

where Ay(d) is the output error due to any disturbance. Then,
the relationship between Ay(d) and uy; is reduced to

1
upp = —EP"Ay(d). )

From this equation, if P~! is stable, then uj, is expected to be
zero, independing on the accuracy of the inverse model.
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Nonholonomic mobile robot

Fig. 7.

TABLE 1
PARAMETERS OF ROBOT IN SIMULATIONS

m kgl Ilkgm’] R [m]
10 5 0.5

r(m] d[m]
0.05 0.2

V. SIMULATIONS

A. Mobile robot
A nonholonomic mobile robot is illustrated by Fig. 7. The
robot can be described by

M(@)i + V(q, 9)q = B(q)r - AT(g)2 (10)

where ¢ is the generalized coordinates, g = [x, y. 6], (x; y.) is
the robot position of the center of gravity, 8 is the azimuth, M
i¢ an inertia matrix, V is the centrifugal and coriolis matrix, B
is the input distribution matrix, A is the matrix associated with
the constrains, and A is the vector of constraint forces. The
kinematic equality constraints can be expressed by A(¢)¢ = 0.
Tte kinematic equality constraint of the mobile robot is

yecos@ — x.sinf —df = 0. (11)
Finally, matrix or vector elements of (10) are derived as
foliows:

[ m 0 md sin 6
M) = 0 m —md cos 0
mdsin -—mdcos@ I
[0 0 mdhcos6
Vig.q) = 0 0 mdfsing
1 0 0 0
cosf cosf
B(g) = -—/| sin8 sin€
" R -R
A(g) = [-sin@ cosf -d]
A = —m(k.cosb+y.sin6)h

where m denotes the mass, / denotes the inertia, d denotes the
distance between the driving axis and the center of mass, 2R
denotes the distance of wheels, and r denotes the radius of
wheel. The physical parameters are shown in Table L

Fig. 8. Structure of RBFNN

TABLE II
GA PARAMETERS

Parameter size 72
Population size 60

Bit size of an individual 576
Selection Tournament method
with 3 individuals
Crossover Uniform crossover
Crossover ratio 0.6
Mutation ratio 1/576

Stop condition 5000 generations
The number of elites 6

B. Design of feedback controller

An alternative representation of equation (10) is as follows:

m 0 vii_111 1 T
0 I-md®> || 6| r|R -R|| 1
where v is the forward velocity of mobile robot, 7, is the
driving torque of right wheel and 7; is the driving torque of

left wheel. When the new state variables are defined as x =
[v 6 8)7, the state equation is given by

] (12)

¥ = Ax+Br (13)
0 0 O

A = 0 0 1
0 0O
1 1/m 1/m

B = - 0 0

"| RIUI-md?® -R/U - md®

where T = [1, 7,]7. The controller FC in Fig. 5 is assumed to
be based on a pole placement approach, because the equation
(13) is the linear system and controllable matrix of equation
(13) is full rank. Thus, the feedback control rule is

T=-Kx (14)

where K is the feedback gain. The designed poles are [-2 —

4 - 6], in which the resultant K is as follows:

K= 0.9572  2.2260  1.6467
T 10734 -3.2329 -2.0052 |-
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C. RBFNN

The present disturbance canceler is based on an RBFNN
illustrated in Fig. 8. The jth unit function of the hidden layer

is
flx - ¢l
Gj(x) = €xp bl B (15)
o
The unit function of the output layer is sigmoid type:
1
Y = 0.5 (16)

1+ exp (z) -
H

& = ) wiGi(®
j=1

where H is the number of hidden layer’s units. For the training
of C, inputs of RBFNN are reference vector [x., y.r 6,], and
output is #sr. In the simulation, H is set to 20.

The training of RBFNN parameters was carried out using
the genetic algorithm (GA). Parameters of GA operations are
shown in Table IL. The cost function of GA is

10
.05 J, Il gl dit

where the simulation time is 10 {s] and the sampling interval
is 0.05 [s].

fitess =

D. Simulation results

In the training, reference trajectory is set to

2.5v2 +0.5¢cos 6,

Xer =
Yoo = 25Y2+0.5¢sin 6,
6, = -3n/4

and the initial values are set to [x.(0) y.(0) 6(0)]
[25V2 25V2 - 3n/4].

Figure 9 illustrates the simulation result of the RBFNN
trained in Fig. 5. The robot can’t track to the reference
trajectory. It is found from Fig. 9 that the training of RBFNN
isn’t sufficient.

Although the training result is insufficient, the trained
RBEFNN is applied for the present disturbance canceler shown
in Fig. 6. The initial value is different from the training
case. The robot trajectory is illustrated in Fig. 10. Note that,
the initial value of solid line is set to [x.(0) y.(0) &0)] =
[25V2 -0.5 25V2 — /4], and that of dotted dash line is
set to [x.(0) y.(0) 60)] = [25V2-001 25v2 - 0.01 -
3n/4 — 0.01]. If the initial change as a disturbance closes to
the training case, then the feedback control inputs become
large. Thus, when the initial change is relatively small, the
robot behaves straight movement. On the contrary, if the initial
change becomes outside of the training range, then the outputs
of RBFNN as a feedback controller have some oscillations.
Therefore, the robot behaves rotational movement in the latter
half of simulation. It is considered from simulation results that
RBFNN as a feedback controller has to be further tuned online
to obtain a better performance on the disturbance rejection.
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Fig. 9. Simulation result using trained parameters
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Fig. 10. Simulation result of disturbance canceler

V1. CoNCLUSIONS

In this paper, we have discussed about the possibility of the
neuro interface-like control system using the concept of IMC.
Advantage of the proposed method is that it need not use any
direct model of the plant as required by the neuro interface and
the internal model control. Simulation results were insufficient.
However, if parameters of the neural network could be adjusted
suitably, then the present method would become effective.
Furthermore, when any online tuning is added to C in the
feedback loop of Fig. 6, the performance will be improved.
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