• Title/Summary/Keyword: disturbance system

Search Result 2,376, Processing Time 0.031 seconds

The Design of Auto Tuning Neuro-Fuzzy PID Controller Based Neural Network (신경회로망 기반 자동 동조 뉴로-퍼지 PID 제어기 설계)

  • Kim, Young-Sik;Lee, Chang-Goo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.7 no.5
    • /
    • pp.830-836
    • /
    • 2006
  • In this paper described an auto tuning neuro-fuzzy PID controller based neural network. The PID type controller has been widely used in industrial application due to its simply control structure, easy of design, and inexpensive cost. However, control performance of the PID type controller suffers greatly from high uncertainty and nonlinearity of the system, large disturbances and so on. In this paper will design to take advantage of neural network fuzzy theory and pid controller auto toning technique. The value of initial scaling factors of the proposed controller were determined on the basis of the conventional PID controller parameters tuning methods and then they were adjusted by using neural network control techniques. This controller simple structure and computational complexity are less, and also application is easy and performance is excellent in system that is strong and has nonlinearity to system dynamic behaviour change or disturbance. Finally, the proposed auto tuning neuro-fuzzy controller is applied to magnetic levitation. Simulation results demonstrated that the control performance of the proposed controller is better than that of the conventional controller.

  • PDF

Simple On-line Elimination Strategy of Dead Time and Nonlinearity in Inverter-fed IPMSM Drive Using Current Slope Information (IPMSM 드라이브에서 전류 기울기 정보를 이용한 데드타임 및 인버터 비선형성 효과의 간단한 제거 기법)

  • Park, Dong-Min;Kim, Myung-Bok;Kim, Kyeong-Hwa
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.5
    • /
    • pp.401-408
    • /
    • 2012
  • A simple on-line elimination strategy of the dead time and inverter nonlinearity using the current slope information is presented for a PWM inverter-fed IPMSM (Interior Permanent Magnet Synchronous Motor) drive. In a PWM inverter-fed IPMSM drive, a dead time is inserted to prevent a breakdown of switching device. This distorts the inverter output voltage, resulting in a current distortion and torque ripple. In addition to the dead time, inverter nonlinearity exists in switching devices of the PWM inverter, which is generally dependent on operating conditions such as the temperature, DC link voltage, and current. The proposed scheme is based on the fact that the d-axis current ripple is mainly caused by the dead time and inverter nonlinearity. To eliminate such an influence, the current slope information is determined. The obtained current slope information is processed by the PI controller to estimate the disturbance caused by the dead time and inverter nonlinearity. The overall system is implemented using DSP TMS320F28335 and the validity of the proposed algorithm is verified through the simulation and experiments. Without requiring any additional hardware, the proposed scheme can effectively eliminate the dead time and inverter nonlinearity even in the presence of the parameter uncertainty.

A Study on the Control of Parallel-Type Inverted Pendulum by $H_\infty$ Control ($H_\infty$제어에 의한 병렬형 도립진자의 제어에 관한 연구)

  • Yang, Joo-Ho;Byun, Jung-Hoan
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.2
    • /
    • pp.178-189
    • /
    • 1995
  • In this pater, authors derive the state - space equiation about the patallel - type inverted pendulum which is adopted as control object, and constitute the control system by $H_\infty$control theory. The modeling error is unavoidably existed by linearization error, and so on. We regard this modeling error which is determined from the identification through frequency response as unstructured model uncertainty. An augmented state - space equiation with frequency weighting function is constructed for application of the $H_\infty$theory, and the mixed sensitivity problem is considered. The weighting functions are determined in consideration of the model uncertainty and the response of system in frequency region. The $H_\infty$controller is designed by using software package for controller design. From results of response simulation, the control system designed with $H_\infty$theory guarantees low sensitivity for disturbance as well as robustness against the model uncertainties.

  • PDF

Study on Effects of Roll in Flight of a Precision Guided Missile for Subsytem Requirements Analysis (구성품 요구 성능 설정을 위한 정밀 유도무기의 비행 중 롤 영향성 연구)

  • Jeong, Dong-Gil;Park, Jin-Seo;Lee, Jong-Hee;Jun, Doo-Sung;Son, Sung-Han
    • Journal of the Korea Society for Simulation
    • /
    • v.28 no.2
    • /
    • pp.131-137
    • /
    • 2019
  • The operation of the precision-guided missiles with seekers is becoming more and more dominant since the modern wars became geographically localized like anti-terror campaigns and civil wars. Imaging seekers are relatively low-price and applicable to various operational conditions. The image tracker, however, requires highly advanced method for the target tracking under harsh missile flight condition. Missile roll can reduce the tracking performance since it introduces big differences in imagery. The missile roll is inevitable because of the disturbance and flight control error. Consequently, the errors of the subsystems should be under control for the stable performance of the tracker and the whole system. But the performance prediction by some simple metric is almost impossible since the target signature and the tracker are highly nonlinear. We established M&S tool for a precision-guided missile with imaging seeker and analyzed the roll effects to tracking and system performance. Furthermore, we defined the specification of missile subsystems through error analysis to guarantee system performance.

Screening of Workers with Presumed Occupational Methanol Poisoning: The Applicablility of a National Active Occupational Disease Surveillance System

  • Eom, Huisu;Lee, Jihye;Kim, Eun-A
    • Safety and Health at Work
    • /
    • v.10 no.3
    • /
    • pp.265-274
    • /
    • 2019
  • Background: Methyl alcohol poisoning in mobile phone-manufacturing factories during 2015-2016 was caused by methyl alcohol use for cleaning in computerized numerical control (CNC) processes. To determine whether there were health complications in other workers involved in similar processes, the Occupational Safety and Health Research Institute conducted a survey. Methods: We established a national active surveillance system by collaborating with the Ministry of Employment and Labor and National Health Insurance Service. Employment and national health insurance data were used. Overall, 12,048 employees of major domestic mobile phone companies and CNC process dispatch workers were surveyed from 2016 to 2017. We investigated methyl alcohol poisoning by using the national health insurance data. Questionnaires were used to investigate diseases due to methyl alcohol poisoning. Results: Overall, 24.9% of dispatched workers were employed in at least five companies, and 23.9% of dispatched workers had missing employment insurance history data. The prevalence of blindness including visual impairment, optic neuritis, visual disturbances, and alcohol toxicity in the study participants was higher than that reported in the national health insurance database (0.02%, 0.07%, 0.23%, and 0.03% versus 0.01%, 0.07%, 0.13%, and 0.01%, respectively, in 2015). Moreover, 430 suspicious workers were identified; 415 of these provided an address and phone number, of whom 48 responded (response rate, 11.6%). Among the 48 workers, 10 had diseases at the time of the survey, of whom 3 workers were believed to have diseases related to methyl alcohol exposure. Conclusion: This study revealed that active surveillance data can be used to assess health problems related to methyl alcohol poisoning in CNC processes and dispatch workers.

Analysis of Load Simulating System Considering Lateral Behavior of a Vehicle (횡방향 거동 특성을 고려한 부하모사 시스템 해석)

  • Kim, Hyo-Jun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.5
    • /
    • pp.621-626
    • /
    • 2019
  • The driver's steering wheel maneuver is a typical disturbance that causes excessive body motion and traveling instability of a vehicle. Abrupt and extreme operation can cause rollover depending on the geometric and dynamic characteristics, e.g., SUV vehicles. In this study, to cope with the performance limitation of conventional cars, fundamental research on the structurization of a control system was performed as follows. Mathematical modeling of the lateral behavior induced by driver input was carried out. A controller was designed to reduce the body motion based on this model. An algorithm was applied to secure robust control performance against modeling errors due to parameter uncertainty, $H_{\infty}$. Using the decoupled 1/4 car, a dynamic load simulating model considering the body moment was suggested. The simulation result showed the validity of the load-simulating model. The framework for a lateral behavior control system is proposed, including an experimental 1/4 vehicle unit, load simulating module, suspension control module, and hardware-in-the-loop simulation technology.

Effects of Material Parameters and Process Conditions on the Roll-Drafting Dynamics

  • Huh, You;Kim, Jong-S.
    • Fibers and Polymers
    • /
    • v.7 no.4
    • /
    • pp.424-431
    • /
    • 2006
  • Roll drafting, a mechanical operation attenuating fiber bundles to an appropriate thickness, is an important operation unit for manufacturing staple yams. It influences not only the linear density regularity of the slivers or staple yams that are produced, but also the quality of the textile product and the efficiency of the thereafter processes. In this research, the dynamic states of the fiber bundle in the roll drafting zone were analyzed by simulation, based on the mathematical model that describes the dynamic behavior of the flowing bundle. The state variables are the linear density and velocity of the fiber bundles and we simulated the dynamics states of the bundle flow, e.g., the profiles of the linear density and velocity in the draft zone for various values of the model parameters and boundary conditions, including the initial conditions to obtain their influence on the dynamic state. Results showed that the mean velocity profile of the fiber bundle was strongly influenced by draft ratio and process speed, while the input sliver linear density has hardly affected the process dynamics. Velocity variance of individual fibers that could be supposed to be a disturbing factor in drafting was also influenced by the process speed. But the major disturbance occurred due to the velocity slope discontinuity at the front roll, which was strongly influenced by the process speed. Thickness of input sliver didn't play any important role in the process dynamics.

Parallel Robust $H_{\infty}$ Control for Weakly Coupled Bilinear Systems with Parameter Uncertainties Using Successive Galerkin Approximation

  • Kim, Young-Joong;Lim, Myo-Taeg
    • International Journal of Control, Automation, and Systems
    • /
    • v.4 no.6
    • /
    • pp.689-696
    • /
    • 2006
  • This paper presents a new algorithm for the closed-loop $H_{\infty}$ composite control of weakly coupled bilinear systems with time-varying parameter uncertainties and exogenous disturbance using the successive Galerkin approximation(SGA). By using weak coupling theory, the robust $H_{\infty}$ control can be obtained from two reduced-order robust $H_{\infty}$ control problems in parallel. The $H_{\infty}$ control theory guarantees robust closed-loop performance but the resulting problem is difficult to solve for uncertain bilinear systems. In order to overcome the difficulties inherent in the $H_{\infty}$ control problem, two $H_{\infty}$ control laws are constructed in terms of the approximated solution to two independent Hamilton-Jacobi-Isaac equations using the SGA method. One of the purposes of this paper is to design a closed-loop parallel robust $H_{\infty}$ control law for the weakly coupled bilinear systems with parameter uncertainties using the SGA method. The other is to reduce the computational complexity when the SGA method is applied to the high order systems.

Simple Neuro-Controllers for Field-Oriented Induction Motor Servo Drives

  • Fayez F. M.;Sousy, E-I;M. M. Salem
    • Journal of Power Electronics
    • /
    • v.4 no.1
    • /
    • pp.28-38
    • /
    • 2004
  • In this paper, the position control of a detuned indirect field oriented control (IFOC) induction motor drive is studied. A proposed Simple-Neuro-Controllers (SNCs) are designed and analyzed to achieve high-dynamic performance both in the position command tracking and load regulation characteristics for robotic applications. The proposed SNCs are trained on-line based on the back propagation algorithm with a modified error function. Four SNCs are developed for position, speed and d-q axes stator currents respectively. Also, a synchronous proportional plus integral-derivative (PI-D) two-degree-of-freedom (2DOF) position controller and PI-D speed controller are designed for an ideal IFOC induction motor drive with the desired dynamic response. The performance of the proposed SNCs and synchronous PI-D 2DOF position controllers for detuned field oriented induction motor servo drive is investigated. Simulation results show that the proposed SNCs controllers provide high-performance dynamic characteristics which are robust with regard to motor parameter variations and external load disturbance. Furthermore, comparing the SNC position controller with the synchronous PI-D 2DOF position controller demonstrates the superiority of the proposed SNCs controllers due to attain a robust control performance for IFOC induction motor servo drive system.

Active Vibration Control of Vehicle by Active Linear Actuator and Filtered-x LMS Algorithm (전동식 동흡진기와 Filtered-X LMS알고리즘을 이용한 차량의 능동진동제어 실험)

  • Lee, Han-Dong;Kwak, Moon-K.;Kim, Jeong-Hoon;Song, Yoon-Chul;Park, Woon-Han
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2009.10a
    • /
    • pp.357-363
    • /
    • 2009
  • This paper deals with the Filtered-x Least Mean Square algorithm for a active vibration control in vehicle vibration reduction. Before applying the proposed FxLMS algorithm to automobile, the performance of the FxLMS algorithm is simulated using sensor data of a vehicle. The FxLMS algorithm requires that reference signal be a representation of disturbance signal and the plant model be incorporated into the computation path. To this end, The system identification is carried out to obtain the plant model based on the measurement results. A tachometer signal is used as reference signal. The FxLMS control algorithm is first tested using simulation and applied to a vehicle. Experimental results show that the proposed control algorithm can reduce vibration level in a short period of time.

  • PDF