• 제목/요약/키워드: disturbance generating system

검색결과 22건 처리시간 0.021초

로봇 제어를 위한 변형 기준 경로 발생 알고리즘의 개발 (The development of generating reference trajectory algorithm for robot manipulator)

  • 민경원;이종수;최경삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.912-915
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researches to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used the concept of sliding mode theory and fuzzy system to reduce chattering in control input. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In this simulation, proposed method showed better trajectory tracking performance compared with the CTM.

  • PDF

적응노치필터를 이용한 심도제어시스템 외란처리 (Disturbance countermeasurement of depth control system using adaptive notch filter)

  • 김윤호;윤형식;임재환;이석필;박상희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국내학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.86-89
    • /
    • 1992
  • One of the most difficult problems in depth control for underwater vehicle is the effect of seaway disturbance. One component of the seaway forces is of large magnitude with a relatively narrow-band, first order component. The other component is generaly of somewhat smaller magnitude, second order component. Since the magnitude of the first order component is generally much greater than the compensating force that can be generating by the planes, it is undesirable for the controller to generate a control command. In this paper, we disigned adaptive notch filtering system using filter bank structure. Energies of each band-passed signal are obtained by MA(Moving Average) method and compared to produce center frequency. By adapting this parameter to notch filter, 1st order seaway disturbance can be removed, which lead to the improvement of automatic depth control system.

  • PDF

오차를 기반으로한 RBF 신경회로망 적응 백스테핑 제어기 설계 (The Adaptive Backstepping Controller of RBF Neural Network Which is Designed on the Basis of the Error)

  • 김현우;윤육현;정진한;박장현
    • 한국정밀공학회지
    • /
    • 제34권2호
    • /
    • pp.125-131
    • /
    • 2017
  • 2-Axis Pan and Tilt Motion Platform, a complex multivariate non-linear system, may incur any disturbance, thus requiring system controller with robustness against various disturbances. In this study, we designed an adaptive backstepping compensated controller by estimating the disturbance and error using the Radial Basis Function Neural Network (RBF NN). In this process, Uniformly Ultimately Bounded (UUB) was demonstrated via Lyapunov and stability was confirmed. By generating progressive disturbance to the irregular frequency and amplitude changes, it was verified for various environmental disturbances. In addition, by setting the RBF NN input vector to the minimum, the estimated disturbance compensation process was analyzed. Only two input vectors facilitated compensatory function of RBF NN via estimating the modeling and control error values as well as irregular disturbance; the application of the process resulted in improved backstepping controller performance that was confirmed through simulation.

두 대의 협력적인 발전기를 갖는 풍력발전기의 외란관측기 기반 제어기의 설계 및 검증 (Design and Verification of Disturbace Observer based Controller for Windturbine with Two Cooperative Generators)

  • 이국선;조황;백주훈;최익
    • 한국전자통신학회논문지
    • /
    • 제12권2호
    • /
    • pp.301-308
    • /
    • 2017
  • 본 논문은 외란관측기 개념을 이용하여 두 대의 협력적인 발전기를 갖는 풍력발전기의 발전 및 요잉 제어기 설계 방법을 제안한다. 협력형 풍력발전기란 날개축으로부터 공급된 풍력 에너지를 두 대의 발전기를 통하여 협력적으로 전기 에너지로 변환하는 차별화된 구조의 풍력발전기를 의미한다. 이 구조에서 두 대의 발전기는 독립적으로 제어가 가능하기 때문에 두 발전기의 발전부하를 적절하게 협력적으로 제어함으로써 발전과 동시에 추가적인 요잉 메커니즘 없이 넛셀의 요잉제어가 가능하다. 이러한 구조적 특징을 이용하여 본 논문에서는 협력형 풍력발전기의 발전 및 요잉제어가 안정적으로 실행될 수 있도록 외란관측기를 기반으로 하는 제어기를 설계하고 이를 소형발전기 시스템에 적용하여 그 성능을 실험적으로 검증하였다.

주파수 변화율을 이용한 동적부하차단 방안 (A Scheme on the Dynamic Load Shedding Using Rate of Frequency Decline)

  • 이소영;장병태;이재욱;오화진;조범섭;김재현
    • 대한전기학회논문지:전력기술부문A
    • /
    • 제52권6호
    • /
    • pp.301-306
    • /
    • 2003
  • When a bulk power system experiences a serious disturbance or heavy load trip, the system frequency may drop and even collapse if the total generating power does not supply the system demand sufficiently. Since an isolated power system possesses a lower inertia and comes with limited reserves, the load shedding by under frequency relay becomes an important strategy to keep system natural frequency. This paper presents a scheme to determine the load shedding criteria by using the rate of change of frequency when the large disturbance happens.

주파수 변화율을 이용한 동적부하차단 계획 방안 (A scheme on the Dynamic Load Shedding Using Rate of Frequency Decline)

  • 이소영;장병태;김경호;추진부;유영식;조범섭;강계희
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 A
    • /
    • pp.289-291
    • /
    • 2002
  • When a bulk power system experiences a serious disturbance or heavy load trip, the system frequency may drop and even collapse if the total generating power does not supply the system demand sufficiently. Since an isolated power system possesses a lower inertia and comes with limited reserves, the load shedding by under frequency relay becomes an important strategy to keep system frequency. This paper presents a scheme to determine the load shedding criteria by using the rate of change of frequency when the large disturbance happens.

  • PDF

가설 트롤리선의 위치 / 장력 혼합제어 (Hybrid Control of Position/Tension for a Stringing Troy Wire)

  • 홍정표
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제33권6호
    • /
    • pp.932-938
    • /
    • 2009
  • As a stringing troy wire is installed by manual operation, it is necessary to scheme the automatic system for stringing troy wire. To accomplish a task of this kind, in this paper an approach to designing controllers for the hybrid Position/Tension control of a stringing troy wire is presented. Position control system is designed based on equation of dc motor and motion equation of robot, it is controlled by feedback with a detected speed dc motor. Tension control system is designed based on equation of ac servomotor for generating torque and dynamic equation of a troy wire, it is controled by feedback with a detected tension. The control parameters is determined by simulation in independence operation of each system. To suppress a mutual interference that the disturbance occur in operating of two task at same time. Dynamic hybrid control is proposed by feed forward compensator with a disturbance accelerator and a step torque at start. The operation of proposed system is simulated and experimented, results is verified the utilities.

기준 경로의 변형에 의한 로붓 매니플레이터 제어에 관한 연구 (The Study on the Control of Robot Manipulator by Modification of Reference Trajectory)

  • 민경원;이종수;최경삼
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1205-1207
    • /
    • 1996
  • The computed-torque method (CTM) shows good trajectory tracking performance in controlling robot manipulator if there is no disturbance or modelling errors. But with the increase of a payload or the disturbance of a manipulator, the tracking errors become large. So there have been many researchs to reduce the tracking error. In this paper, we propose a new control algorithm based on the CTM that decreases a tracking error by generating new reference trajectory to the controller. In this algorithm we used a fuzzy system based on the rule bases. For the numerical simulation, we used a 2-link robot manipulator. To simulate the disturbance due to a modelling uncertainty, we added errors to each elements of the inertia matrix and the nonlinear terms and assumed a payload to the end-effector. In the simulations of several cases, our method showed better trajectory tracking performance compared with the CTM.

  • PDF

제어모멘트자이로 김블의 토크 외란 모델링 검증 및 피드포워드 제어를 이용한 토크 리플 저감 (Verification of Torque Disturbance Modeling of CMG Gimbal and Its Torque Ripple Reduction using Feed-Forward Control)

  • 이준용;오화석
    • 항공우주시스템공학회지
    • /
    • 제12권1호
    • /
    • pp.27-34
    • /
    • 2018
  • CMG의 발생 토크는 김블의 각속도에 비례하고 위성의 자세제어에 직접적인 영향을 미치기 때문에 김블의 토크 리플 저감이 필요하다. 본 논문에서는 토크 리플의 발생 원인을 베어링에 의한 마찰 불균형, 모터의 자기장과 상전류 불균형으로 가정하여 이를 수학적으로 모델링한다. 김블의 정속 구동 데이터를 통해 모델링의 파라미터를 추정하고 이를 이용하여 피드포워드 제어로 적용할 경우 영향성을 분석한다. 시뮬레이션을 통해 토크 리플과 각속도 변동이 저감되는 것을 확인하여 외란 모델링을 이용한 외란 저감 기법을 제시한다.

지형 추종을 위한 모델 예측제어와 비선형 외란 관측기를 이용한 백스테핑 슬라이딩 모드 제어기법 설계 (A Design of Model Predictive Control and Nonlinear Disturbance Observer-based Backstepping Sliding Mode Control for Terrain Following)

  • 이동우;홍경우;임철수;방효충;임동주;박대성;송기훈
    • 한국군사과학기술학회지
    • /
    • 제27권4호
    • /
    • pp.495-506
    • /
    • 2024
  • In this study, we propose the terrain following algorithm using model predictive control and nonlinear disturbance observer-based backstepping sliding mode controller for an aircraft system. Terrain following is important for military missions because it helps the aircraft avoid detection by the enemy radar. The model predictive control is used to replace the generating trajectory and guidance with the flight path angle constraint. In addition, the aircraft is affected to the parameter uncertainty and unknown disturbance such as wind near the mountainous terrain. Therefore, we suggest the nonlinear disturbance-based backstepping sliding mode control method for the aircraft that has highly nonlinearity to enhance flight path angle tracking performance. Through the numerical simulation, the proposed method showed the better tracking performance than the traditional backstepping method. Furthermore, the proposed method presented the terrain following maneuver maintaining the desired altitude.