• Title/Summary/Keyword: distribution power system

Search Result 3,021, Processing Time 0.034 seconds

The Development of Distribution Planning System and Distribution Line Planning System (배전계획 시스템(DISPLAN) 및 배전계통 운영계획 시스템(DLPLAN)의 개발)

  • Chae Woo Kyu;Park Chang Ho;Jeong Jong Man;Jeong Young Ho
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.73-75
    • /
    • 2004
  • This paper presents the ability and the application of software packages for distribution planning which are DISPLAN(Distribution Planning System) and DLPLAN(Distribution Line Planning System) developed in KEPCO. After calculating size and position of maximum load by administration section for distribution, it forecasts the demand of distribution load considering growth location, increment, new load plan, etc of load by annual. Also it calculates distribution loss, voltage drop using modeled distribution line by you, and support for establishment and enlargement plan of substation and distribution line, decision of most optimal path. And it presents the abstract of used algorithm to develop this system.

  • PDF

The Development of Application Programs for Optimal Feeder Operation Through Distribution Automatic System

  • Ha, Bok-Nam;Seol, Ieel-Ho;Jeong, Mi-Ae
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.1
    • /
    • pp.42-47
    • /
    • 2004
  • This paper presents the various application programs for the Distribution Automation System (DAS) of the Korea Electric Power Corporation (KEPCO)'s distribution system. These programs are developed to allow for optimal operation in the areas of feeder automation, relay coordination, loss minimization and so on. They are single line diagram auto creation programs for the feeder, service restoration program, protection coordination program, data error detection program, and optimal network reconfiguration program. The details of these programs are presented for validity and effectiveness.

Premium Power Quality Using Combination of Microturbine Unit and DC Distribution System

  • Noroozian, Reza;Abedi, Mehrdad;Gharehpetian, Gevorg
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.1
    • /
    • pp.103-115
    • /
    • 2010
  • This paper discusses a DC distribution system which has been supplied by external AC systems as well as local microturbine distributed generation system in order to demonstrate an overall solution to power quality issue. Based on the dynamic model of the converter, a design procedure has been presented. In this paper, the power flow control in DC distribution system has been achieved by network converters. A suitable control strategy for these converters has been proposed, too. They have DC voltage droop regulator and novel instantaneous power regulation scheme. Also, a novel control system has been proposed for MT converter. Several case studies have been studied and the simulation results show that DC distribution system including microturbine unit can provide the premium power quality using proposed methods.

UPFC Performance Control in Distribution Networks for DG Sources in the Islanding

  • Fandawi, Ahmed;Nazarpour, Daryoosh
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.5
    • /
    • pp.303-309
    • /
    • 2017
  • The flexible AC transmission system (FACTS) provides a new advanced technology solution to improve the flexibility, controllability, and stability of a power system. The unified power flow controller (UPFC) is outstanding for regulating power flow in the FACTS; it can control the real power, reactive power, and node voltage of distribution networks. This paper investigates the performance of the UPFC for power flow control with a series of step changes in rapid succession in a power system steady state and the response of the UPFC to distribution network faults and islanding mode. Simulation was carried out using the MATLAB's simulink sim power systems toolbox. The results, which were carried out on a 5-bus test system and a 4-bus multi-machine electric power system, show clearly the effectiveness and viability of UPFC in rapid response and independent control of the real and reactive power flows and oscillation damping [6].

Evaluation Methodology of System Interruption Cost Taking into Consideration Failure Rate of Distribution Facilities (배전기자재별 고장확률을 고려한 배편계통 수용가 정전비용 산출 기법)

  • Choe, Sang-Bong;Kim, Dae-Gyeong;Jeong, Seong-Hwan
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.51 no.5
    • /
    • pp.232-237
    • /
    • 2002
  • It is increased for methodology to evaluate distribution power system interruption cost in power supply zones under competitive electricity market. This paper presents algorithms to evaluate system interruption cost in distribution power supply zones taking into consideration failure rate of distribution facilities and composite customer interruption cost. In this paper, it is introduced for weighting factor for each customer failure duration and failure rate of distribution facilities to evaluate reasonable system interruption cost in distribution power supply area. Also, this Paper estimates evaluation results of system interruption cost using a sample model system. Finally, evaluation results of system interruption cost based on failure rate of distribution facilities and composite customer interruption cost are shown in detail.

A Study on the Distribution Planning using Computer Systems (전산 시스템을 이용한 배전계획 연구 - CADPAD를 이용한 배전계획 -)

  • Hwang, S.Ch.;Moon, B.H.;Hong, S.H.;Jang, J.T.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.205-207
    • /
    • 1993
  • Distribution planning requires comprehensive knowledge about not only distribution but also transmission/subtransmission system expansion plan. At the same time, distribution planning is very time consuming and a series of routine job which involves a lot of experience and efforts of planning engineers. Since the quality of distribution planning depends upon the ability of planning engineers, the economy of investment should be taken into consideration. The object of this study is to establish a computerized distribution planning system which helps distribution engineers finding a new system expansion plan. It provides the engineers with at optimal system expansion plan which satisfies the condition of both reliability and economy.

  • PDF

A study on the development of distribution simulator and simulation results for use in distribution automation system of IEC 61850 protocol (IEC 61850 프로토콜의 배전자동화시스템에 사용을 위한 배전시뮬레이터 개발과 시뮬레이션 결과에 관한 연구)

  • Kim, Jae-Hong;Oh, Jae-Gon
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.15 no.2
    • /
    • pp.95-102
    • /
    • 2022
  • It is a study for the evaluation of the stability of the distribution automation system for the expansion of renewable energy. Through the Renewable Energy 3020 Implementation Plan, the government plans to expand new renewable energy and convert it to participatory energy that improves the quality of life of the people by 2030. The government has set a target of 20% of domestic supply energy for renewable energy generation by 2030. It is planning to establish more than 95 percent of its new facilities with clean energy such as solar power and wind power. By expanding the supply of renewable energy, new energy businesses and distributed power industry were fostered, and short-distance, low-voltage, and small-scale power generation were rapidly expanded rather than large-scale power development in the past. Due to this demand, the importance of power distribution facility operation has emerged and the need for distribution automation system is increasing. This paper discusses the development of a power distribution simulator for the performance and function evaluation of power distribution automation systems and presents the results of an interlocking test with the power distribution automation system. In order to introduce an advanced system into the power distribution system, it is necessary to take advantage of the transmission and distribution system. The DNP3.0 protocol is used in the distribution system and the IEC61850 protocol is used in the transmission and distribution system. It was concluded that the functions and performance of operations were satisfied when these two protocols are mixed and used in the distribution automation system.

Bus-voltage Sag Suppressing and Fault Current Limiting Characteristics of the SFCL Due to its Application Location in a Power Distribution System

  • Kim, Jin-Seok;Lim, Sung-Hun;Kim, Jae-Chul
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.6
    • /
    • pp.1305-1309
    • /
    • 2013
  • The application of the superconducting fault current limiter (SFCL) in a power distribution system is expected to contribute the voltage-sag suppression of the bus line as well as the fault-current reduction of the fault line. However, the application effects of the SFCL on the voltage sag of the bus line including the fault current are dependent on its application location in a power distribution system. In this paper, we investigated the fault current limiting and the voltage sag suppressing characteristics of the SFCL due to its application location such as the outgoing point of the feeder, the bus line, the neutral line and the 2nd side of the main transformer in a power distribution system, and analyzed the trace variations of the bus-voltage and fault-feeder current. The simulated power distribution system, which was composed of the universal power source, two transformers with the parallel connection and the impedance load banks connected with the 2nd side of the transformer through the power transmission lines, was constructed and the short-circuit tests for the constructed system were carried out. Through the analysis on the short-circuit tests for the simulated power distribution system with the SFCLs applied into its representative locations, the effects from the SFCL's application on the power distribution system were discussed from the viewpoints of both the suppression of the bus-voltage sag and the reduction of the fault current.

Power Quality Analysis of Wind Power System Embedded in Distribution Networks (풍력발전시스템의 배전계통 연계운전 시 전의품질 해석)

  • Kim, Eung-Sang;Roh, Pyung-Kweon;Chu, Jin-Bu;Chang, Byung-Tae;Lee, Seung-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.229-231
    • /
    • 1999
  • This paper deals with electromagnetic transient modelling of wind power system embedded in distribution networks. Wind power system consists of induction generator link reactor, distribution line, and controlled load unit. The introduction of embedded wind power system presents a new set of conditions to networks both with respect to power quantify needed to be transported and power quality such as sag swell, very short interruption, and flicker. This paper investigates the transient behavior of voltage, frequency, and load flow in wind driven induction generation system embedded in distribution networks.

  • PDF

A study for IT Based Optimal Voltage Control Method of Distribution Systems with Distributed Generation (IT기반 분산전원 연계 배전계통의 최적전압조정에 관한 연구)

  • Kim, Jung-Nyun;Baek, Young-Sik;Seo, Gyu-Seak
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.4
    • /
    • pp.139-143
    • /
    • 2006
  • Recently, standard of living improved and Information-Communication industry developed rapidly. Thereby, interest about electric power quality is rising worldwide. So, research and Development to enhance electric power quality in various viewpoint until most suitable supply system from each kind device to improve electric power quality. And specially, interest about voltage quality is rising by diffusion increase of information communication appliance and minuteness control appliance etc. Also Power consumption is increasing, but expansion of large size generator by environmental and site security problem is difficult. So, introduction of distribution generation is investigated actively by electric-power industry reorganization. Voltage management of power system had been controlled by ULTC (Under Load Tap Changer) in substation and pole transformer on the high voltage distribution line. But, voltage control device on substation and distribution line is applied each other separatively. Therefore, efficiency of line voltage control equipment is dropping. Also, research about introduction upper limit of distribution generation is consisting continuously. This paper presents cooperation use way between voltage control device and introduction upper limit of distribution generation for most suitable voltage control in distribution power system.