• Title/Summary/Keyword: distribution parameter

Search Result 2,522, Processing Time 0.044 seconds

Frequency analysis of deep curved nonlocal FG nanobeam via DTM

  • S. A. H. Hosseini;O. Rahmani
    • Steel and Composite Structures
    • /
    • v.49 no.6
    • /
    • pp.603-614
    • /
    • 2023
  • In this paper, frequency analysis of curved functionally graded (FG) nanobeam by consideration of deepness effect has been studied. Differential transform method (DTM) has been used to obtain frequency responses. The nonlocal theory of Eringen has been applied to consider nanoscales. Material properties are supposed to vary in radial direction according to power-law distribution. Differential equations and related boundary conditions have been derived using Hamilton's principle. Finally, by consideration of nonlocal theory, the governing equations have been derived. Natural frequencies have been obtained using semi analytical method (DTM) for different boundary conditions. In order to study the effect of deepness, the deepness term is considered in strain field. The effects of the gradient index, radius of curvature, the aspect ratio, the nonlocal parameter and interaction of aforementioned parameters on frequency value for different boundary conditions such as clamped-clamped (C-C), clamped-hinged (C-H), and clamped-free (C-F) have been investigated. In addition, the obtained results are compared with the results in previous literature in order to validate present study, a good agreement was observed in the present results.

Free vibration analysis of sandwich cylindrical panel composed of graphene nanoplatelets reinforcement core integrated with Piezoelectric Face-sheets

  • Khashayar Arshadi;Mohammad Arefi
    • Steel and Composite Structures
    • /
    • v.50 no.1
    • /
    • pp.63-75
    • /
    • 2024
  • In this paper, the modified couple stress theory (MCST) and first order shear deformation theory (FSDT) are employed to investigate the free vibration and bending analyses of a three-layered micro-shell sandwiched by piezoelectric layers subjected to an applied voltage and reinforced graphene nanoplatelets (GPLs) under external and internal pressure. The micro-shell is resting on an elastic foundation modeled as Pasternak model. The mixture's rule and Halpin-Tsai model are utilized to compute the effective mechanical properties. By applying Hamilton's principle, the motion equations and associated boundary conditions are derived. Static/ dynamic results are obtained using Navier's method. The results are validated with the previously published works. The numerical results are presented to study and discuss the influences of various parameters on the natural frequencies and deflection of the micro-shell, such as applied voltage, thickness of the piezoelectric layer to radius, length to radius ratio, volume fraction and various distribution pattern of the GPLs, thickness-to-length scale parameter, and foundation coefficients for the both external and internal pressure. The main novelty of this work is simultaneous effect of graphene nanoplatelets as reinforcement and piezoelectric layers on the bending and vibration characteristics of the sandwich micro shell.

On the snap-buckling phenomenon in nanocomposite curved tubes

  • Dan Chen;Jun Shao;Zhengrong Xu;Hadi Babaei
    • Structural Engineering and Mechanics
    • /
    • v.89 no.1
    • /
    • pp.13-22
    • /
    • 2024
  • The nonlinear snap-through buckling of functionally graded (FG) carbon nanotube reinforced composite (CNTRC) curved tubes is analytically investigated in this research. It is assumed that the FG-CNTRC curved tube is supported on a three-parameter nonlinear elastic foundation and is subjected to the uniformly distributed pressure and thermal loads. Properties of the curved nanocomposite tube are distributed across the radius of the pipe and are given by means of a refined rule of mixtures approach. It is also assumed that all thermomechanical properties of the nanocomposite tube are temperature-dependent. The governing equations of the curved tube are obtained using a higher-order shear deformation theory, where the traction free boundary conditions are satisfied on the top and bottom surfaces of the tube. The von Kármán type of geometrical non-linearity is included into the formulation to consider the large deflection in the curved tube. Equations of motion are solved using the two-step perturbation technique for nanocomposite curved tubes which are simply-supported and clamped. Closed-form expressions are provided to estimate the snap-buckling resistance of FG-CNTRC curved pipes rested on nonlinear elastic foundation in thermal environment. Numerical results are given to explore the effects of the distribution pattern and volume fraction of CNTs, thermal field, foundation stiffnesses, and geometrical parameters on the instability of the curved nanocomposite tube.

Prediction Method of Loudspeaker Driver Characteristics (스피커 드라이브 특성 예측 기법)

  • Park, Soon-Jong;Rho, Sung-Tak
    • The Journal of the Acoustical Society of Korea
    • /
    • v.27 no.7
    • /
    • pp.325-332
    • /
    • 2008
  • The prediction method of TS parameters, frequency response, and electrical input impedance is proposed with physical properties of parts and results of electromagnetic FEA(Finite Element Analysis) in a loudspeaker driver design. In design for weight reduction and improvement of flux density asymmetry, the prediction results are well coincided with measurement ones. As the applications, it can be applied in design for improvement of the $2^{nd}$ harmonic distortion with flux density distribution analysis. The proposed method is expected to be utilized for reducing trial-and-error process in electromagnetic parts design. It can also be used for providing guidelines for parts selection in the early stages.

The Use of Transabdominal Ultrasound in Inflammatory Bowel Disease

  • Jiro Hata;Hiroshi Imamura
    • Korean Journal of Radiology
    • /
    • v.23 no.3
    • /
    • pp.308-321
    • /
    • 2022
  • Transabdominal ultrasound (TAUS) is useful in all aspects of lesion screening, monitoring activity, or treating/diagnosing any related complications of inflammatory bowel disease. Its ability to screen or diagnose complications is almost the same as that of other methods, such as CT or MRI. Moreover, its noninvasiveness makes it a first-line examination method. A TAUS image depicting ulcerative colitis will show large intestinal wall thickening that is continuous from the rectum, which is mainly due to mucosal layer thickening, while for Crohn's disease, a TAUS image is characterized by a diversity in the areas affected, distribution, and layer structure. Indicators of activity monitoring include wall thickness, wall structure, and vascular tests that use Doppler ultrasound or contrast agents. While all of these have been reported to be useful, at this time, no single parameter has been established as superior to others; therefore, a comprehensive evaluation of these parameters is justified. In addition, evaluating the elasticity of lesions using elastography is particularly useful for distinguishing between fibrous and inflammatory stenoses. However, the lack of objectivity is the biggest drawback of using ultrasound. Standardizing and popularizing the ultrasound process will be necessary, including scanning methods, equipment settings, and image analysis.

Probabilistic bearing capacity of circular footing on spatially variable undrained clay

  • Kouseya Choudhuri;Debarghya Chakraborty
    • Geomechanics and Engineering
    • /
    • v.38 no.1
    • /
    • pp.93-106
    • /
    • 2024
  • The present paper investigates the spatial variability effect of soil property on the three-dimensional probabilistic characteristics of the bearing capacity factor (i.e., mean and coefficient of variation) of a circular footing resting on clayey soil where both mean and standard deviation of undrained shear strength increases with depth, keeping the coefficient of variation constant. The mean trend of undrained shear strength is defined by introducing the dimensionless strength gradient parameter. The finite difference method along with the random field and Monte Carlo simulation technique, is used to execute the numerical analyses. The lognormal distribution is chosen to generate random fields of the undrained shear strength. In the study, the potential failure of the structure is represented through the failure probability. The influences of different vertical scales of fluctuation, dimensionless strength gradient parameters, and coefficient of variation of undrained shear strength on the probabilistic characteristics of the bearing capacity factor and failure probability of the footing, along with the probability and cumulative density functions, are explored in this study. The variations of failure probability for different factors of safety corresponding to different parameters are also illustrated. The results are presented in non-dimensional form as they might be helpful to the practicing engineers dealing with this type of problem.

Vibrational behavior of porous composite laminated plates using four unknown integral shear deformation theory

  • Hayat Saidi;Abdelouahed Tounsi;Fouad Bourada;Abdelmoumen Anis Bousahla;Abdeldjebbar Tounsi;Firas Ismail Salman Al-Juboori
    • Steel and Composite Structures
    • /
    • v.52 no.3
    • /
    • pp.249-271
    • /
    • 2024
  • In this scientific work, an analytical solution for the dynamic analysis of cross-ply and angle-ply laminated composite plates is proposed. Due to technical issues during the manufacturing of composite materials, porosities and micro-voids can be produced within the composite material samples, which can carry on to a reduction in the density and strength of the materials. In this research, the laminated composite plates are assumed to have new distributions of porosities over the plate cross-section. The structure is modeled using a simple integral shear deformation theory in which the transverse shear deformation effect is included. The governing equations of motion are obtained employing the principle of Hamilton's. The solution is determined via Navier's approach. The Maple program is used to obtain the numerical results. In the numerical examples, the effects of geometry, ratio, modulus ratio, fiber orientation angle, number of layers and porosity parameter on the natural frequencies of symmetric and anti-symmetric laminated composite plates is presented and discussed in detail. Also, the impacts of the kinds of porosity distribution models on the natural frequencies of symmetric and anti-symmetric laminated composite plates are investigated.

Development and validation of wall and interfacial friction models in LOCUST for reactor downcomer with direct vessel injection

  • Rongshuan Xu;Xinan Wang;Caihong Xu;Dongyu He;Ting Wang;Jinggang Li
    • Nuclear Engineering and Technology
    • /
    • v.56 no.10
    • /
    • pp.4397-4403
    • /
    • 2024
  • The multi-dimensional thermal-hydraulic phenomena in the downcomer of advanced pressurized water reactor with direct vessel injection system are the key points for the safety analysis during a loss of coolant accident. In order to improve the accuracy of LOCUST code for the predictions of thermal-hydraulic phenomena in downcomer region, some newly correlations have been implemented into LOCUST code. The wall friction model of LOCUST code was modified based on the correlations which developed by Yang. The interfacial friction models in LOCUST code have been modified as Hibiki-Ishii correlations. In addition, in order to simulate the upward flow of recirculation flow in downcomer region, the Kinoshita-Hibiki correlations have been also implemented into LOCUST code for better simulating the recirculation flow in downcomer region. The modified code was validated with experimental data of DOBO facility. Five tests of DOBO facility have been calculated by LOCUST, and the calculated axial void fraction distributions have been compared with the measurements. The results show that the modified LOCUST with new correlations of distribution parameter and drift velocity shows better accuracy than the original code. The deviations of the modified LOCUST code are less than the original code and are almost within ±20 %.

Price Volatility, Seasonality and Day-of-the Week Effect for Aquacultural Fishes in Korean Fishery Markets (수산물 시장에서의 양식 어류 가격변동성.계절성.요일효과에 관한 연구 - 노량진수산시장의 넙치와 조피볼락을 중심으로 -)

  • Ko, Bong-Hyun
    • The Journal of Fisheries Business Administration
    • /
    • v.40 no.2
    • /
    • pp.49-70
    • /
    • 2009
  • This study proviedes GARCH model(Bollerslev, 1986) to analyze the structural characteristics of price volatility in domestic aquacultural fish market of Korea. As a case study, flatfish and rock-fish are analyzed as major species with relatively high portion in an aspect of production volume among fish captured in Korea. For analyzing, this study uses daily market data (dating from Jan 1 2000 to June 30, 2008) published by the Noryangjin Fisheries Wholesale Market which is located in Seoul of Korea. This study performs normality test on trading volume and price volatility of flatfish and rock-fish as an advanced empirical approach. The normality test adopted is Jarque-Bera test statistic. As a result, first, a null hypothesis that "an empirical distribution follows normal distribution" was rejected in both fishes. The distribution of daily market data of them were not only biased toward positive(+) direction in terms of kurtosis and skewness, but also characterized by leptokurtic distribution with long right tail. Secondly, serial correlations were found in data on market trading volume and price volatility of two species during very long period. Thirdly, the results of unit root test and ARCH-LM test showed that all data of time series were very stationary and demonstrated effects of ARCH. These statistical characteristics can be explained as a reasonable ground for supporting the fitness of GARCH model in order to estimate conditional variances that reveal price volatility in empirical analysis. From empirical data analysis above, this study drew the following conclusions. First of all, from an empirical analysis on potential effects of seasonality and the day of week on price volatility of aquacultural fish, Monday effects were found in both species and Thursday and Friday effects were also found in flatfish. This indicates that Monday is effective in expanding price volatility of aquacultural fish market and also Monday has higher effects upon the price volatility of fish than other days of week have since it has more new information for weekend. Secondly, the empirical analysis led to a common conclusion that there was very high price volatility of flatfish and rock-fish. This points out that the persistency parameter($\lambda$), an index of possibility for current volatility to sustain similarly in the future, was higher than 0.8-equivalently nearly to 1-in both flatfish and rock-fish, which presents volatility clustering. Also, this study estimated and compared and model that hypothesized normal distributions in order to determine fitness of respective models. As a result, the fitness of GARCH(1, 1)-t model was better than model where the distribution of error term was hypothesized through-distribution due to characteristics of fat-tailed distribution, was also better than model, as described in the results of basic statistic analysis. In conclusion, this study has an important mean in that it was introduced firstly in Korea to investigate in price volatility of Korean aquacultural fishery products, although there was partially a limited of official statistic data. Therefore, it is expected that the results of this study will be useful as a reference material for making and assessing governmental policies. Also, it is looked forward that the results will be helpful to build a fishery business plan as and aspect of producer, and also to take timely measures to potential price fluctuations of fishery products in market. Hence, it is advisable that further studies related to such price volatility in fishery market will extend and evolve into a wider variety of articles and issues in near future.

  • PDF

Extraction Characteristics of Heavy Metals for Soil Washing of Mine Tailings-contaminated Soil according to Particle Size Distribution (토양세척공정에서 광미오염토양 입자크기에 따른 중금속 추출특성)

  • Kim, Joung-Dae
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.98-104
    • /
    • 2008
  • This research was performed to evaluate the extraction characteristics of heavy metals for soil washing of mine tailings-contaminated soil according to particle size distribution and the chemical distributional existence of the metals. As the soil particle size was decreased, the extracted concentrations of heavy metals was increased except Fe and Mn. Most of all heavy metals were extracted within 6 h by soil washing with 0.05 M EDTA. Extraction efficiency of metals was decreased for Pb, Cu, and Zn with decreasing of particle size. Significant difference was not observed in extraction efficiency for Cd according to particle size distribution. Extraction efficiency for Cd was the highest as 86~91%, while the lowest as 5~14% for Fe. Most metals of the soil without soil washing was distributed as reducible, oxidizable, and residual fractions. Pb, Zn, and Cd existed as reducible (Fe/Mn oxide) and residual fractions and Cu existed as oxidizable and residual fractions after soil washing treatment with 0.05 M EDTA. As the soil particle size was decreased, residual fraction was increased for Pb and Cu. About 90% of reducible fraction in Pb, Zn, and Cd was removed by soil washing with 0.05 M EDTA. As the results, it was founded that soil particle size was the important parameter to effect on distributional fraction and extraction efficiency of metals in mine tailings-contaminated soil.