• Title/Summary/Keyword: distribution of flexural reinforcement

Search Result 55, Processing Time 0.023 seconds

Experimental investigations on seismic responses of RC circular column piers in curved bridges

  • Jiao, Chiyu;Li, Jianzhong;Wei, Biao;Long, Peiheng;Xu, Yan
    • Earthquakes and Structures
    • /
    • v.17 no.5
    • /
    • pp.435-445
    • /
    • 2019
  • The collapses of curved bridges are mainly caused by the damaged columns, subjected to the combined loadings of axial load, shear force, flexural moment and torsional moment, under earthquakes. However, these combined loadings have not been fully investigated. This paper firstly investigated the mechanical characteristics of the bending-torsion coupling effects, based on the seismic response spectrum analysis of 24 curved bridge models. And then 9 reinforced concrete (RC) and circular column specimens were tested, by changing the bending-tortion ratio (M/T), axial compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratio, respectively. The results show that the bending-torsion coupling effects of piers are more significant, along with the decrease of girder curvature and the increase of pier height. The M/T ratio ranges from 6 to 15 for common cases, and influences the crack distribution, plastic zone and hysteretic curve of piers. And these seismic characteristics are also influenced by the compression ratio, longitudinal reinforcement ratio and spiral reinforcement ratios of piers.

AN EXPERIMENTAL STUDY ON REINFORCEMENT OF ACRYLIC RESIN DENTURE BASE (아크릴릭 레진 의치상 강화에 관한 실험적 연구)

  • Kim Hyung-Sik;Kim Chang-Whe;Kim Young-Soo
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.32 no.3
    • /
    • pp.411-430
    • /
    • 1994
  • The denture may be fractured accidentally by an impact while outside the mouth, or may be cracked or broken while in service in the mouth. The latter is generally a fatigue failure caused by repeated flexure over a period of time. This investigation compared the flexural fatigue resistance, the impact force and the transverse strength of two denture base materials with and without the grid strengthener, the T300, the T800 and the Kevlar fiber to evaluate the fracture resistance. The distribution and behavior of fibers across fracture lines were examined by Hi-Scope Compact Microvision System. Through analyses of the data from this study, the following conclusions were obtained. 1. The flexural fatigue resistance, impact strength and transverse strength of high impact strength resin were higher than those of conventional heat polymerizing resin, but statistically there was no significant difference(p>0.05). 2. All specimens with and without the grid strengthener did not show significant differences in the flexural fatigue, the impact and the transverse strength test(p>0.05). 3. All specimens reinforced with the T300, the T800 and the Kevlar fiber showed significant increase of the fatigue resistance and the impact force(p<0.05). 4. All specimens reinforced with the T800 and the Kevlar fiber showed significant increase of the transverse strength(p<0.05). 5. All specimens reinforced with the T300, the T800 and the Kevlar fiber exhibited greenstick fractures. The fibers tended to remain enveloped in the resin, resisting pull-out.

  • PDF

Fabrication of Two-Layered $Al-B_4C$ Composites by Conventional Hot Pressing Uuder Nitrogen Atmosphere and Their Characterization

  • Bedir Fevzi
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.7
    • /
    • pp.1002-1011
    • /
    • 2006
  • In this study, we describe the conventional hot pressing (CHP) of layered $Al-B_4C$ composites and their characterization. The matrix alloy Al-5 wt.%Cu was prepared from elemental powder mixtures. The metal and B4C powders were mixed to produce either $Al-Cu-10vol.%B_4C$ or $Al-Cu-30vol.%B_4C$ combinations. Then, these powder mixtures were stacked as layers in the hot pressing die to form a two-layered composite. Hot pressing was carried out under nitrogen atmosphere to produce $30\times40\times5mm$ specimens. Microstructural features and age hardening characteristics of composites were determined by specimens cut longitudinally. The flexural strength of both layered composites and their monolithic counterparts were investigated via three point bending tests. In the case of layered specimens of both $10vol.%B_4C$ and $30vol.%B_4C$ containing layers were loaded for three-point test. The results show that a homogeneous distribution of $B_4C$ particles in the matrix alloy which is free of pores, can be obtained by CHP method. The ageing behavior of the composites was found to be influenced by the reinforced materials, i.e. higher hardness values were reached in 8 hrs for the composites than that for the matrix alloy. Flexural strength test showed that two-layered composites exhibited improved damage tolerance depending on layer arrangement. Microstructural investigation of the fracture surfaces of the bending specimens was performed by means of scanning electron microscope (SEM). While layer with lower reinforcement content exhibited large plastic deformation under loading, the other with higher reinforcement content exhibited less plastic deformation.

Performance Based Design of Coupling Beam Considering Probability Distribution of Flexural and Shear Strength (휨강도와 전단강도의 확률분포를 고려한 연결보의 성능기반설계)

  • Kim, Yun-Gon;Cho, Suk-Hee
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.5
    • /
    • pp.509-516
    • /
    • 2013
  • In this paper, performance based design of coupling beam using non-linear static analysis is proposed considering probability distribution of flexural and shear strength in order to develop flexural hinge. This method considers post-yielding behavior of coupling beam and stress redistribution of system. It can verify the reduced effective stiffness to meet the current design requirement based on linear analysis. It also evaluates the lateral displacement under service load (un-factored wind load) properly. In addition, it can optimize the coupled shear wall system by taking stress redistribution between members into account. For a simplified 30-story building, non-linear static (push-over) analysis was performed and the structural behavior was checked at performance point and several displacement steps. Furthermore, system behavior according to the amount of reinforcement and depth of coupling beam was explored and compared each other.

Ductility Capacity of Slender-Wind R/C Walls (긴 세장한 R/C 벽체의 연성능력)

  • 홍성걸
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.202-212
    • /
    • 2000
  • This study investigates the ductility capacity of slender-wide reinforced concrete walls under predominant flexural moment loading. The experimental work for this study aims to provide design guidelines for bar detailing in critical regions under compressive stress in particular in case of slender-wide RC walls. According to the experimental observation the Bernoulli hypothesis of linear strain distribution is no longer valid and the ultimate compressive strain of concrete is significantly reduced, It is postulated that the nonlinear strain distribution causes the concentrated compressive stressed region and hence the premature crushing failure at the toe of walls. The reduced ultimate strain and nonlinear strain distribution need transverse reinforcement for confinement and more realistic models for the strength and displacement estimation of slender-wide RC wall.

  • PDF

Strut-tie model for two-span continuous RC deep beams

  • Chae, H.S.;Yun, Y.M.
    • Computers and Concrete
    • /
    • v.16 no.3
    • /
    • pp.357-380
    • /
    • 2015
  • In this study, a simple indeterminate strut-tie model which reflects complicated characteristics of the ultimate structural behavior of continuous reinforced concrete deep beams was proposed. In addition, the load distribution ratio, defined as the fraction of applied load transferred by a vertical tie of truss load transfer mechanism, was proposed to help structural designers perform the analysis and design of continuous reinforced concrete deep beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratio, a concept of balanced shear reinforcement ratio requiring a simultaneous failure of inclined concrete strut and vertical steel tie was introduced to ensure the ductile shear failure of reinforced concrete deep beams, and the primary design variables including the shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete were reflected upon. To verify the appropriateness of the present study, the ultimate strength of 58 continuous reinforced concrete deep beams tested to shear failure was evaluated by the ACI 318M-11's strut-tie model approach associated with the presented indeterminate strut-tie model and load distribution ratio. The ultimate strength of the continuous deep beams was also estimated by the experimental shear equations, conventional design codes that were based on experimental and theoretical shear strength models, and current strut-tie model design codes. The validity of the proposed strut-tie model and load distribution ratio was examined through the comparison of the strength analysis results classified according to the primary design variables. The present study associated with the indeterminate strut-tie model and load distribution ratio evaluated the ultimate strength of the continuous deep beams fairly well compared with those by other approaches. In addition, the present approach reflected the effects of the primary design variables on the ultimate strength of the continuous deep beams consistently and reasonably. The present study may provide an opportunity to help structural designers conduct the rational and practical strut-tie model design of continuous deep beams.

Web-shear capacity of prestressed hollow-core slab unit with consideration on the minimum shear reinforcement requirement

  • Lee, Deuck Hang;Park, Min-Kook;Oh, Jae-Yuel;Kim, Kang Su;Im, Ju-Hyeuk;Seo, Soo-Yeon
    • Computers and Concrete
    • /
    • v.14 no.3
    • /
    • pp.211-231
    • /
    • 2014
  • Prestressed hollow-core slabs (HCS) are widely used for modern lightweight precast floor structures because they are cost-efficient by reducing materials, and have excellent flexural strength and stiffness by using prestressing tendons, compared to reinforced concrete (RC) floor system. According to the recently revised ACI318-08, the web-shear capacity of HCS members exceeding 315 mm in depth without the minimum shear reinforcement should be reduced by half. It is, however, difficult to provide shear reinforcement in HCS members produced by the extrusion method due to their unique concrete casting methods, and thus, their shear design is significantly affected by the minimum shear reinforcement provision in ACI318-08. In this study, a large number of shear test data on HCS members has been collected and analyzed to examine their web-shear capacity with consideration on the minimum shear reinforcement requirement in ACI318-08. The analysis results indicates that the minimum shear reinforcement requirement for deep HCS members are too severe, and that the web-shear strength equation in ACI318-08 does not provide good estimation of shear strengths for HCS members. Thus, in this paper, a rational web-shear strength equation for HCS members was derived in a simple manner, which provides a consistent margin of safety on shear strength for the HCS members up to 500 mm deep. More shear test data would be required to apply the proposed shear strength equation for the HCS members over 500 mm in depth though.

Reinforcement Effects using V Type External Strands on PSC I Girder Bridges (V자형 배치 외부강선을 이용한 PSC I거더교의 보강 효과)

  • Back, Seung-Chul;Song, Jae-Ho;Kim, Haeng-Bae;Kim, Suk-Su
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.3
    • /
    • pp.49-57
    • /
    • 2016
  • This study intended to analyze reinforcement effects of PSC I girder bridges to which prestresses are introduced using V type of external strands. So that series of bridge loading tests are carried out on existing PSC I girder bridge for the cases of before-reinforcement and reinforcement. The measured results from tests being analyzed and compared with the ones from MIDAS structural analyzing program, the reinforcing effects of the reinforcement system adopted in this study were investigated. It is found out that when the V type systems are applied to the bridge girders, the slope of load distribution factor curves become lower improving soundness of bridge upper structure. And also it is confirmed that the reinforcement system in this study can be taken as helpful for improvement of both flexural and shear ability of PSC I girder bridges, as well as dynamic behavior. Furthermore it is found when the elastic pads are applied to the system, dynamic reinforcing effects are maximized.

Strut-Tie Models and Load Distribution Ratios for Reinforced Concrete Beams with Shear Span-to-Effective Depth Ratio of Less than 3 (I) Models and Load Distribution Ratios (전단경간비가 3 이하인 철근콘크리트 보의 스트럿-타이 모델 및 하중분배율(I) 모델 및 하중분배율)

  • Chae, Hyun-Soo;Yun, Young Mook
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.3
    • /
    • pp.257-265
    • /
    • 2016
  • The failure behavior of reinforced concrete beams is governed by the mechanical relationships between the shear span-to-effective depth ratio, flexural reinforcement ratio, load and support conditions, and material properties. In this study, two simple indeterminate strut-tie models which can reflect all characteristics of the failure behavior of reinforced concrete beams were proposed. The proposed models are effective for the beams with shear span-to-effective depth ratio of less than 3. For each model, a load distribution ratio, defined as the fraction of load transferred by a truss mechanism, is also proposed to help structural designers perform the rational design of the beams by using the strut-tie model approaches of current design codes. In the determination of the load distribution ratios, the effect of the primary design variables including shear span-to-effective depth ratio, flexural reinforcement ratio, and compressive strength of concrete was reflected through numerous material nonlinear analysis of the proposed indeterminate strut-tie models. In the companion paper, the validity of the proposed models and load distribution ratios was examined by applying them to the evaluation of the failure strength of 335 reinforced concrete beams tested to failure by others.

Flexural Characteristics of Reinforced Polymer Concrete T-Beams Strengthened with GFRP (GFRP 보강 철근 폴리머 콘크리트 T형 보의 휨 특성)

  • Jin, Nan-Ji;Hwang, Hae-Geun;Yeon, Jung-Heum
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.5
    • /
    • pp.585-596
    • /
    • 2012
  • In this study, the flexural characteristics of reinforced polymer concrete T-beams strengthened with GFRP, typically used for bridges and parking structures, are investigated. A method to determine the flexural failure mode of reinforced polymer concrete T-beams comprised of compression failure (CF), tension failure (TF), and fiber sheet failure (FF) for different levels of GFRP strengthening is proposed. Moreover, the present study provides a formula to calculate the design flexural strength for each failure mode. In reinforced polymer concrete T-beams strengthened with GFRP, an ideal failure mode can be achieved when the failure occurs in the following order: 1) yield of steel reinforcement, 2) failure of GFRP, and 3) compression failure of concrete. In the case of FF mode, due to GFRP failure before the polymer concrete crushing in compression region, a concept of equivalent rectangular block based on the ultimate limit state of concrete should not be used. Thus, this study suggests an idealized stress-strain curve for polymer concrete and finds parameters for stress block, ${\alpha}$ and ${\beta}$ based on the strain distribution in polymer concrete. Furthermore, the present study suggests an aspect ratio of 2.5 by examining the compressive stress distribution and design flexural strength characteristics for different aspect ratio of T-beams. This study also provides a design flexural strength formula, and validates its acceptability based on experiment and theoretical analysis.