• Title/Summary/Keyword: distribution line conductor

Search Result 47, Processing Time 0.027 seconds

Surge Analysis Considering Variation of Line Configuration Factor in Combined Distribution Systems with Power Cables (혼합배전계통 선로구성요소 변화를 고려한 선로 서지해석)

  • Kim, Byong-Sook;Lee, Jang-Geun;Han, Byoung-Sung;Lee, Jong-Beom
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.3
    • /
    • pp.472-480
    • /
    • 2007
  • This paper analyzes overvoltage on testing line for various parameter effect examination. Model systems consist of overhead line and underground cable. The model considered actual characteristic data of distribution lines. and will be constructed at testing yard. The simulations were performed under various line configuration such as cable kinds, cable length, lightning wave, lightning wave time, transformer and branch circuits. The simulation models are established by EMTP/ATPDraw and Line Constants are calculated by ATP_LCC. When lightning surge strikes on conductor of overhead line, EMTP/ATPDraw calculates overvoltage in many cases. Simulation results will be compared with real testing results at testing yard. The compared results will be used to establish protection methods in actual underground distribution systems.

The Effects of Elastic Modulus Coefficient and Linear Expansion Coefficient of Overhead Conductor on Sag Behavior (가공전선의 이도거동에서 탄성계수와 선팽창계수의 영향)

  • Kim, Byung-Geol;Kim, Shang-Shu;Wang, Yun-Chan
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.10
    • /
    • pp.954-960
    • /
    • 2008
  • The effects of elastic modulus coefficient and linear expansion coefficient of overhead distribution power line(ACSR $58 mm^2$) on sag behavior in distribution line have been investigated to clarify the difference between specification and experimental level. The elastic modulus coefficients of Al wire and steel wire were $5,182.6 kgf/mm^2,\;18,348.8 kgf/mm^2$, respectively Therefore, the computational composition elastic modulus coefficient of the power line was $7,063.5 kgf/mm^2$, while that of experimentally measured was $7681.1 kgf/mm^2$. As a result, we found that elastic modulus coefficient which was experimentally measured was higher than that of computational by 8.7 %. However, when planner designs the sag of disoibution line, the elastic modulus coefficient of power line $8,400 kgf/mm^2$ should be generally adopted. These two different using values lead to the sag difference of 0.62 m. The other results will be discussed.

A Lightning Surge Analysis of Testing Line for Protection of Underground Distribution Systems (지중배전계통 보호를 위한 모의시험선로 서지특성 해석)

  • Kim Byoung-Sung;Lee Jang-Geun;Lee Jong-Beom;Han Byong-Sook
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.55 no.8
    • /
    • pp.313-321
    • /
    • 2006
  • This paper describes the overvoltage obtained by surge behavior analysis in testing underground distribution systems. Model systems consist of overhead distribution line and underground cable. Such model system considered various characteristics of actual distribution systems will be soon constructed at testing yard. Simulation is carried out under various states such as cable kinds, cable length, lightning wave and time, and branch circuits. Model is established by EMTP/ATPDraw. Line Constants are calculated by ATP_LCC. When the direct lightning surge strikes on conductor of overhead line, the overvoltage is calculated using EMTP/ATPDraw in many cases. Simulation results will be compared with real testing results at testing yard in the near future. The compared results will be used to establish protection methods in actual underground distribution systems.

Analysis of Induced Voltage on Telecommunication Line in Parallel Distribution System

  • Kim, Hyun-Soo;Rhee, Sang-Bong;Lee, Soon-Jeong;Kim, Chul-Hwan;Kim, Yoon Sang
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.726-732
    • /
    • 2014
  • A current flowing through a distribution conductor produces induced voltage, which is harmful to a telecommunication line. Previous research on induced voltage has been focused on single-circuit lines in the distribution system. However, the double-circuit lines, referred to as parallel distribution lines, are widely used in distribution systems because they have significant economic and environmental advantages over single-circuit lines. Therefore, a study on the induced voltage in double-circuit lines is needed. This paper presents a method of calculating the induced voltage in a parallel distribution system using four-terminal parameters and vector analysis. The calculation method is verified by the Electromagnetic Transient Program (EMTP) simulation.

A Study on Characteristic Impedance and Electromagnetic Distribution by the Edge Effect of Printed Cicuit Board Line (PCB선로의 끝단효과에 의한 특성임피던스 및 전자계분포에 관한 연구)

  • 장인범;박건호;이수길;김성렬;김용주;김영천;이준웅
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.323-325
    • /
    • 1997
  • Conventionally it is asummed that the microstrip line conductor has a rectangular cross-section. but the additive and substactive processes used to create conductors for PCBs produce a conductor of approximately Trapezoidal cross-section. For wide Strip line, the thickness and edge effect will be small since most of capacitance is parallel plate rather than fringing and we can ignore the cross-section. For narrow strip lines, the edge effect become immportant. So in this paper, we measure the chracteristic impedance of microstripline by Vector Analyzer and simulate the electromagnetic field of microstripline using finite element method with edge angle.

  • PDF

Analysis of Surge behavior on Branch Line in the Underground Distribution Systems (지중배전계통에서의 분기선로의 서지특성 해석)

  • Lee, Jang-Geun;Lee, Jong-Beom;Lee, Jae-Bong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07a
    • /
    • pp.157-158
    • /
    • 2006
  • This paper describes the overvoltage of branch line in underground distribution systems when the direct lightning surge strikes on conductor of overhead line. Distribution systems are very complex because that includes so many branch lines, transformers, switches and so on. Therefor model systems consist of overhead distribution lines, underground cable include branch lines, lightning source and switches. Those are established by EMTP/ATPDraw. Simulation analyzes surge behavior on branch lines considering various conditions in underground distribution systems. Simulation results shoe overvoltage with location in various cases.

  • PDF

Mechanical and Electrical Properties of Aluminum Wires of ACSR Conductors due to Forest Fire (산불에 노출된 강심알루미늄연선 송전선 알루미늄 선재의 기계적 및 전기적 특성 거동)

  • Lee, Won-Kyo;Lee, Jung-Won;Kim, Byung-Geol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.9
    • /
    • pp.730-735
    • /
    • 2010
  • Forest fire can cause a serious damage to overhead conductors. Therefore, detailed investigation on the changes of mechanical and electrical properties of damaged conductors should be carried out to understand the effect of forest fires on conductors. This is of critical importance in maintaining transmission line safely. This paper examines the changes of mechanical and electrical properties of flame exposed conductor. Tensile strength (TS) decreased according to increase of forest fire temperature and conductivity changed according to forest fire temperature. Specimens were aluminum conductors of aluminium conductor steel reinforced (ACSR) 410, 240, 480 $mm^2$. In this paper, the electrical and mechanical characteristics of forest fires exposed overhead conductors depending on the diameter of aluminum conductors are presented. It was possible to estimate the degree of deterioration caused by forest fires. The detailed results are given in the paper.

Analysis of Surge Behavior and Protection Method in the Underground Distribution Systems with Branch Lines (분기선로가 포함된 지중배전계통에서 서지특성 해석 및 보호방안에 관한 연구)

  • Lee, Jang-Geun;Lee, Jong-Beom;Lee, Jae-Bong;Kim, Byoung-Sook
    • Proceedings of the KIEE Conference
    • /
    • 2006.11a
    • /
    • pp.148-150
    • /
    • 2006
  • This paper describes the overvoltage at the branch line in underground distribution systems when the direct lightning surge strikes on conductor of overhead line. Distribution systems are very complex because it includes many branch lines, transformers, switches and so on. Therefore model system consists of overhead distribution lines, underground cable include branch lines, lightning source and switches. Analysis are performed using EMTP to understand and evaluate the surge behavior on branch lines considering various conditions in underground distribution systems. Simulation results show overvoltage with location in various cases. It is evaluated that result will be used to establish protection methods in actual underground distribution systems.

  • PDF

Numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to conventional quasi-steady analysis

  • Yang, Xiongjun;Lei, Ying;Zhang, Jianguo
    • Structural Engineering and Mechanics
    • /
    • v.75 no.4
    • /
    • pp.487-496
    • /
    • 2020
  • Most of the previous works on numerical analysis of galloping of transmission lines are generally based on the quasisteady theory. However, some wind tunnel tests of the rectangular section or hangers of suspension bridges have shown that the galloping phenomenon has a strong unsteady characteristic and the test results are quite different from the quasi-steady calculation results. Therefore, it is necessary to check the applicability of the quasi-static theory in galloping analysis of the ice-covered transmission line. Although some limited unsteady simulation researches have been conducted on the variation of parameters such as aerodynamic damping, aerodynamic coefficients with wind speed or wind attack angle, there is a need to investigate the numerical simulation of unsteady galloping of two-dimensional iced transmission line with comparison to wind tunnel test results. In this paper, it is proposed to conduct a two dimensional (2-D) unsteady numerical analysis of ice-covered transmission line galloping. First, wind tunnel tests of a typical crescent-shapes iced conductor are conducted firstly to check the subsequent quasisteady and unsteady numerical analysis results. Then, a numerical simulation model consistent with the aeroelastic model in the wind tunnel test is established. The weak coupling methodology is used to consider the fluid-structure interaction in investigating a two-dimension numerical simulation of unsteady galloping of the iced conductor. First, the flow field is simulated to obtain the pressure and velocity distribution of the flow field. The fluid action on the iced conduct at the coupling interface is treated as an external load to the conductor. Then, the movement of the conduct is analyzed separately. The software ANSYS FLUENT is employed and redeveloped to numerically analyze the model responses based on fluid-structure interaction theory. The numerical simulation results of unsteady galloping of the iced conduct are compared with the measured responses of wind tunnel tests and the numerical results by the conventional quasi-steady theory, respectively.