• Title/Summary/Keyword: distribution line conductor

Search Result 47, Processing Time 0.031 seconds

Evaluation of Operation Practicality on Line with Aluminum Conductor in Underground T&D Systems (지중송전 및 배전계통에서 알루미늄 도체 선로운용의 실용성 평가)

  • Jang, Ju-Yeong;Lee, Jong-Beom;Kim, Yong-Kap
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.3
    • /
    • pp.492-499
    • /
    • 2011
  • This paper describes that the evaluation on operation practicality of Al conductor cable will be used instead of Cu conductor cable. Analysis is divided into two kinds of cases as transmission and distribution. To evaluate that Al conductor line has the insulation strength indeed safely, various analysis and calculation such as single line-to-ground fault current, lightning surge and allowance current were carried. Model was established based on real combined transmission and distribution is being used in utility with EMTP. The analysis results on Al and Cu conductor line were compared each other. It was proved that Al conductor line can be operated instead of Cu conductor line without special insulation problem in transmission and distribution, in electrical view point such as overvoltage and allowance current.

Empirical Study on the Dip Design and Installation of Distribution Line Conductors (배전선로의 이도설계 및 시공에 대한 실증연구)

  • Ahn, Ihn-Seok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.24 no.3
    • /
    • pp.307-313
    • /
    • 2021
  • In this study, the comparative analysis, among the design standard value of distribution power, the calculated value from the measurement data of strand and the empirical data of the distribution line itself, have been performed for the elastic coefficients and linear expansion coefficients of distribution line conductors. The empirical values of elastic coefficients were lower about 10.6%(892kgf/mm2) than those of the design standard value of the distribution power and there were a little difference between the empirical values of linear expansion coefficients and the design standard value of the distribution power. From the above results, it could be concluded that the empirical values of conductor characteristics should be used in the dip design and installation of distribution line.

Assessment of Short-Time Characteristic ACSR-OC Conductor (ACSR-OC 전선의 단시간 특성 평가)

  • Lee, Joong-Kwan;Kim, Dong-Muyng;Yi, Sue-Muk
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1446-1448
    • /
    • 2002
  • The short-time permissible temperature of an overhead distribution line conductor is determined by the softening characteristics of ACSR-OC, ACSR AW/OC 160, typical conductors employed in the overhead distribution line. Transient heat transfer equation and Newton's cooling law were applied to analyze the heating and cooling effects of the insulating conductors, respectively, and the error of co-relation was calibrated after simulating the softening test to assess the short-time characteristic of the insulating conductor. In order to verify the softening characteristic, the conductors were tested with heat cycle. The test was totally carried out 200 cycles, and 1 cycle was to heat and cool at 1.1 times permissible current of the conductor, 1.15 times for 120 minutes, respectively. After heating, the tensile strength and surface of the conductor were observed. In case of ACSR-OC, as the result of 100 hour heating test, the tensile strength of the insulator was 0.8 times the initial value. This is equivalent to the value of the conductors which are used for 10 years at sites.

  • PDF

Corona Cage Simulation on Environmental Characteristics Caused by the Ion flow of Candidated Conductor Bundles for HVDC Overhead Transmission (초고압 직류 가공송전 후보 도체방식의 이온류 환경특성 코로나 케이지 모의시험)

  • Ju, Mun-No;Yang, Kwang-Ho;Lee, Dong-Il;Shin, Koo-Yong
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.56 no.10
    • /
    • pp.1791-1795
    • /
    • 2007
  • Small ions generated at conductor corona sources remain in the atmosphere until they recombine with ions of opposite polarity, attach to aerosols, or make contact with an object. Ion current density is major factor to design conductor configuration of DC overhead transmission line. Several techniques have been used to measure the ion current of HVDC overhead transmission line. In this study, the ion current density was measured by a plate electrode made of a metal flat board at DC corona cage. The sensitivity of the plate electrode is $0.156uA/m^2/V$. To obtain an useful database on corona discharge, it is necessary to do corona test on several kinds of conductor bundles. Therefore, a number of experiments were conducted on several kinds of conductor bundles. To reliably analyze ion effects, corona cage test data were obtained over a long period of time under various weather conditions and expressed as a statistical distribution. Ion current density distribution in foul weather shows a significant increase in levels over the corresponding fair weather. Based on this results, we evaluated the environmental characteristic caused by ion flow of three candidated conductor bundles.

Analysis of the Load Transfer Capacity and Study of Conductor Sizes for Contingency Levels in Distribution Systems (상정사고별 배전측 부하분담 능력 분석과 도체 규격 검토)

  • 조남훈;전영재;한용희;한병성
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.363-370
    • /
    • 2003
  • This paper presents the analysis of the load transfer capacity and study of conductor size for variable contingencies in distribution systems. The operation capacity of feeders was changed to improve operation efficiency in KEPCO, considerations for contingencies are still based on the previous capacity. In order to cope with the changes such as operation capacity, it is necessary to study whether the present "contingency support criteria" is reasonable or not, also to confirm the whether the present criteria should be improved or not. We analyze the load transfer capacity and conductor size on a distribution system for contingency levels such as the substation-level, bank-level, feeder-level, and zone-level.one-level.

Assessment of the Electrical Environmental Characteristics to Decide Optimal Bundle Type for HVDC ${\pm}500kV$ Overhead Transmission Lines (HVDC ${\pm}500kV$ 가공 송전선로의 최적 도체방식 선정을 위한 전기환경특성 평가)

  • Ju, Mun-No;Kil, Gyung-Suk;Yang, Kwang-Ho;Lee, Sung-Doo;Hwang, Gi-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.11
    • /
    • pp.520-526
    • /
    • 2006
  • Corona interferences, such as radio noise, audible noise and television noise, need to be taken into account in the design of HVDC transmission line conductor configuration. Therefore the line designer requires data from which to estimate the corona performance of any set of conductors. To get a sufficiently complete set of design data, it is necessary to examine the corona test of a large number of conductor geometries. This paper presents the results of corona cage test among three types of candidate conductors. It is quite clear from test results that the conductor geometries play an important role in establishing the magnitude of corona noise. Corona noise data from corona cage test are expressed as a statistical distribution of results obtained over long periods of time and various weather conditions. Therefore we can determine an environmentally-friendly conductor bundle for HVDC overhead transmission line. Based on this finding results, various simulations about HVDC line configurations, such as pole space and pole height, will be conducted. And then finally an optimal configuration for HVDC transmission line will be decided.

Effective Installations Technique of Grounding Conductors for Metal Oxide Surge Arrestors (배전피뢰기용 접지도선의 효과적인 설치기법)

  • Lee, Bok-Hui;Gang, Seong-Man;Yu, In-Seon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.6
    • /
    • pp.253-259
    • /
    • 2002
  • This paper deals with the effects of grounding conductors for metal oxide surge arresters. When surge arresters are improperly installed, the results can cause costly damage of electrical equipments. In particular, the route of surge arrester connection is very important because bends and links of leads increase the impedances to lightning surges and tend to nullify the effectiveness of a grounding conductor. Therefore, there is a need to know how effective installation of lightning surge arresters is made in order to control voltage and to absorb energy at high lightning currents. The effectiveness of a grounding conductor and 18 [㎸] metal oxide distribution line arresters was experimentally investigated under the lightning and oscillatory impulse voltages. Thus, the results are as follows; (1) The induced voltage of a grounding conductor is drastically not affected by length of a connecting line, but it is very sensitive to types of grounding conductor. (2) The coaxial cable having a low characteristic impedance is suitable as a grounding conductor. (3) It is also clear from these results that bonding the metal raceway enclosing the grounding conductor to the grounding electrode is very effective because of skin effect. (4) The induced voltages of grounding conductors for the oscillatory impulse voltages are approximately twice as large as those for the lightning impulse voltages.

Transformer Winding Modeling based on Multi-Conductor Transmission Line Model for Partial Discharge Study

  • Hosseini, Seyed Mohammad Hassan;Baravati, Peyman Rezaei
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.1
    • /
    • pp.154-161
    • /
    • 2014
  • To study and locate partial discharge(PD) and analyze the transient state of power transformer, there is a need for a high frequency model of transformer winding and calculation of its parameters. Due to the high frequency nature of partial discharge phenomenon, there is a need for an accurate model for this frequency range. To attain this goal, a Multi-Conductor Transmission Line (MTL) model is used in this paper for modeling this transformer winding. In order that the MTL model can properly simulate the transformer behavior within a frequency range it is required that its parameters be accurately calculated. In this paper, all the basic parameters of this model are calculated by the use of Finite Element Method (FEM) for a 20kV winding of a distribution transformer. The comparison of the results obtained from this model with the obtained shape of the waves by the application of PD pulse to the winding in laboratory environment shows the validity and accuracy of this model.

Calculation and Mitigation of Magnetic Field Produced by Straight Line-Conductor with Finite Length (유한장 직선도체에 의한 자계의 계산 및 감소대책)

  • Kang, Dae-Ha
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.6
    • /
    • pp.57-67
    • /
    • 2011
  • Purpose of this study is to find the mitigation method of magnetic field by finite length multi-conductors such as indoor distribution lines and to be applicable to design of the distribution lines. For this purpose, exact formula about the components $B_x$, $B_y$, $B_z$ of magnetic field need in case of straight line-conductor with finite length forward any direction. In this study simple formula of the components were deduced and by using these formula magnetic fields for various models of line-configurations were calculated. And also a calculation method of induced currents in conductive shield was presented and using this method, programing of calculation is relatively easy and calculation time is short. The magnetic field after cancellation by these induced currents was calculated. All of calculations were performed by Matlab 7.0 programs. Through the calculation results it could be obtained followings for the mitigation of magnetic fields. The separation between conductors ought to be smaller than smaller as possible. In case of 3-phase, delta configuration is more effective than flat configuration. In case of 3-phase, unbalanced currents ought to be reduced as possible.. In case of more than two circuits of 3-phase, adequate locations of each phase-conductor such as rotating configuration of 3-phase conductors are more effective. The magnetic shielding effect of the conductive shielding sheet is very high.

A Computer method in Economical Design of Conductor Sizes of Distribution Lines (전자계산기에 의한 배전선료전선 단면적의 경제적 설계법)

  • Young Moon Park
    • 전기의세계
    • /
    • v.24 no.5
    • /
    • pp.107-110
    • /
    • 1975
  • This paper describes computational algorithms and a computer program for optimum determinations of wire conductor sizes of radial or tree-type distibution lones with given constraints. Here, The objective function is defined as the total summation of the volume or weight of respective conductor materials required for buildingup the entire distributing system. Four categories of constraints are applied to the obiective function. That is, on the respective load points constraint is imposed by a specified voltage drop limit, and the respective line elements are capable of carrying the current safely(safety current) and also must maintain the minimum thickness in viewpoint of mechanical strength and legal requirements. And finally, the conductor sizes have to be selected among the standardized size levels of the products. These kinds of optimization problems cannot be solved by the ordinary optimization tediniques such as the Linear Programming Method, SUMT Technique, etc. This paper, therefore, successfully devised the powerful alorithms to solve the problem, using the particular properties or characteristics ingerent to the radial or tree-type distribution system. The computer program developed from the algorithms was applied to several sample systems and shown to be exact and very efficient.

  • PDF