• Title/Summary/Keyword: distribution box

Search Result 441, Processing Time 0.03 seconds

Development of a Submerged Propeller Turbine for Micro Hydro Power

  • Kim, Byung-Kon
    • The KSFM Journal of Fluid Machinery
    • /
    • v.18 no.6
    • /
    • pp.45-56
    • /
    • 2015
  • This paper aims to develop a submerged propeller turbine for micro hydropower plant which allows to sustain high values of efficiency in a broad range of hydrological conditions (H=2~6 m, $Q=0.15{\sim}0.39m^3/s$). The two aspects to be considered in this development are mechanical simplicity and high-efficiency operation. Unlike conventional turbines that have spiral casing and gear box, this is directing driving and no spiral casing. A 10 kW class turbine which has the most high potential of the power generation has been developed. The most important element in the design of turbine is the runner blade. The initial blade is designed using inverse design method and then the runner geometry is modified by classical hydraulic method. The design process is carried out in two steps. First, the blade shape is fix and then other components of submerged propeller turbine are designed. Computational fluid dynamics analyses based on the Navier-Stokes equations have been used to obtain overall performance data for the blade and the full turbine, respectively. The results generated by performance parameters(head, guide vane opening angle and rotational speed) variations are theoretically analysed. The evaluation criteria for the blade and the turbine performances are the pressure distribution and flow's behavior on the runner blades and turbine. The results of simulation reveals an efficiency of 91.5% and power generation of 10.5kW at the best efficiency point at the head of 4m and a discharge of $0.3m^3/s$.

Computation of Temperature Rising by Absorbed Power Radiated from a Portable Phone (휴대폰 전파인 인제 흡수전력량과 온도 상승량 산출)

  • 이승학;김채영;강승진
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.3
    • /
    • pp.409-426
    • /
    • 2001
  • Absorbed power of the human head radiated from a 900 MHz portable phone and temperature rise are computed using FDTD(Finite-Difference Time-Domain) method. For this computation the 5 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 8.15 cm, and the output power of a phone is 600 mW. Under the predetermined model the distribution of 1 g, 10 g averaged SAR and temperature rise rate over the human head are calculated, from which it was found that the position of maximum SAR is near at the head skin surface, not deep places far into the head. The position of the highest temperature is located far from the head skin more than that of the maximum SAR occured. The averaged SAR and temperature along the distance between the head and phone are calculated according to seperation distance between the head and phone.

  • PDF

Computation of Absorbed Power adiated from a Portable Phone Using FDTD (FDTD 방법을 이용한 휴대폰 전파의 인체 흡수전력량 산출)

  • 김채영;이승학;정백호
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.9 no.4
    • /
    • pp.491-498
    • /
    • 1998
  • Based on FDTD(Finite-Difference Time-Domain) method the human head absorbed power radiated from a 1.8 GHz portable phone is computed. For this computation the 7 layered media for the human head modeling and the monopole antenna attached to metallic box for the portable phone are used. To reflect the real circumstances typical sizes of human heads and portable phones are considered in the calculation. The length of monopole antenna is 4.5 cm. Under the predetermined model the distribution of SAR over the human head are calculated, and from which the place of maximum SAR is near the head skin surface, not deep places far into the head. The computation shows the maximum SAR to be 1.4 mWg somewhat less than the internationally adopted value of 1.6 mW/g.

  • PDF

Optimization of Silver Nanoparticles Synthesis through Design-of-Experiment Method (실험계획법을 활용한 은 나노 입자의 합성 및 최적화)

  • Lim, Jae Hong;Kang, Kyung Yeon;Im, Badro;Lee, Jae Sung
    • Korean Chemical Engineering Research
    • /
    • v.46 no.4
    • /
    • pp.756-763
    • /
    • 2008
  • The aim of this work was to obtain uniform and well-dispersed spherical silver nanoparticles using statistical design-of-experiment methods. We performed the experiments using 2 k fractional factorial designs with respect to key factors of a general chemical reduction method. The nanoparticles prepared were characterized by SEM, TEM and UV-visible absorbance for particle size, distribution, aggregation and anisotropy. The data obtained were analyzed and optimized using a statistical software, Minitab. The design-of-experiment methods using quantified data enabled us to determine key factors and appreciate interactions between factors. The measured properties of nanoparticles were dominated not only by individual one or two main factors but also by interactions between factors. The appropriate combination of the factors produced small, narrow-distributed and non-aggregated silver nanoparticles of about 30 nm with approximately 10% standard deviation.

Thermal analysis of two main CCS(cargo containment system) insultaion box by using experimental thermal properties (실험적 열적 물성치를 반영한 CCS 방열박스의 열전달 해석)

  • Choi, Sung-Woong;Roh, Jeong-U;Kim, Moo-Sun;Lee, Woo-Il
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.4
    • /
    • pp.429-438
    • /
    • 2011
  • In this paper, experiment of thermal conductivity among thermal properties for CCS insulation material was carried out under the condition ranged from room temperature to cryogenic temperature. CCS insulation system should be sustained under cryogenic temperature($-163^{\circ}C$), and lots of investigations will be conducted how to block the heat to insulation material. CCS components which consist of various materials are especially the main interests, and how the temperature of the entire CCS along the location is should be investigated through these studies. With the experimental thermal properties, the steady state thermal analysis of the entire cargo system was conducted. When the LNG leaked through the insulation system with external impact, temperature distribution and thermal safety of secondary barrier, especially plywood and hull structure, was observed.

A Study on the Spatial Characteristics of the Multi-housing Units in Seoul and Kyung-gi Area - Focused on the Unit Size of over $165m^2$- (최근 분양된 수도권 공동주택 단위세대의 공간계획 특성에 관한 연구 - 전용면적 $165m^2$ 이상의 대형규모를 중심으로 -)

  • Kim, Mi-Kyoung
    • Korean Institute of Interior Design Journal
    • /
    • v.16 no.6
    • /
    • pp.116-124
    • /
    • 2007
  • The purpose of this study is to find out the spatial characteristics of the multi-housing units in Seoul and Kyung-gi area since 2006. Literature review and content analysis were used for this study and 82units of the big size over $165m^2$ were analyzed to review such design characteristics as spatial composition, layout and linkage. Through this study, the following conclusions have been reached; 1) Most unit plans had 4LDK and 3bath types including family room as a public space. This results shows that family-room and bathroom has recently become more important than number of rooms in multi-housing units planning. 2) Diversity of plan figures such as mass-mixing, mass-separation and polygons(L, V-type)was showed in most unit plan, breaking from the standardized forms of box types. 3) Intermediated spaces such as foyers and halls in entrance zone were planned and sub-entrance into kitchen were planned for the various types of circulation and work-efficiency. Cases had private space separated from public space, the dispersion of rooms with the increase of connection by corridors, L-DK meaning the living room isolated from the dining and kitchen, partially located living room for a view in area distribution. The spatial planning of master-zone mostly consists of the types of two-rooms and an entry into a foyer(library, dress-powder room, bathroom and master bedroom). This study has a significant meaning on grasping current trend in Korean multi-housing and to provide information for future direction on housing-unit design.

Structural health rating (SHR)-oriented 3D multi-scale finite element modeling and analysis of Stonecutters Bridge

  • Li, X.F.;Ni, Y.Q.;Wong, K.Y.;Chan, K.W.Y.
    • Smart Structures and Systems
    • /
    • v.15 no.1
    • /
    • pp.99-117
    • /
    • 2015
  • The Stonecutters Bridge (SCB) in Hong Kong is the third-longest cable-stayed bridge in the world with a main span stretching 1,018 m between two 298 m high single-leg tapering composite towers. A Wind and Structural Health Monitoring System (WASHMS) is being implemented on SCB by the Highways Department of The Hong Kong SAR Government, and the SCB-WASHMS is composed of more than 1,300 sensors in 15 types. In order to establish a linkage between structural health monitoring and maintenance management, a Structural Health Rating System (SHRS) with relevant rating tools and indices is devised. On the basis of a 3D space frame finite element model (FEM) of SCB and model updating, this paper presents the development of an SHR-oriented 3D multi-scale FEM for the purpose of load-resistance analysis and damage evaluation in structural element level, including modeling, refinement and validation of the multi-scale FEM. The refined 3D structural segments at deck and towers are established in critical segment positions corresponding to maximum cable forces. The components in the critical segment region are modeled as a full 3D FEM and fitted into the 3D space frame FEM. The boundary conditions between beam and shell elements are performed conforming to equivalent stiffness, effective mass and compatibility of deformation. The 3D multi-scale FEM is verified by the in-situ measured dynamic characteristics and static response. A good agreement between the FEM and measurement results indicates that the 3D multi-scale FEM is precise and efficient for WASHMS and SHRS of SCB. In addition, stress distribution and concentration of the critical segments in the 3D multi-scale FEM under temperature loads, static wind loads and equivalent seismic loads are investigated. Stress concentration elements under equivalent seismic loads exist in the anchor zone in steel/concrete beam and the anchor plate edge in steel anchor box of the towers.

Packaging Standardization for Biological Control Agents (천적 곤충 포장 표준화에 관한 연구)

  • Ham, Eun Hye;Nam, Yun Bok;Jun, Hye Jeong
    • Korean journal of applied entomology
    • /
    • v.60 no.2
    • /
    • pp.203-214
    • /
    • 2021
  • This study aimed at establishing a packaging standardization method that allows the maintenance of biological control agents product quality during delivery. First, based on the results of distribution status analysis of biological control agent products from four manufacturers, we confirmed that the mean temperature was maintained at 25.6℃ (minimum and maximum temperatures.: 18.1 and 30.7℃, respectively) inside the packaging box of each company for 36-48 h. To establish the optimal packaging method for each season, seven external temperature conditions were set ranging between 0℃ and 30℃ at intervals of 5℃. In addition, we evaluated internal temperature maintenance performance for each coolant pack handling method and determined 14 packaging combinations. A packaging combination that maintained a temperature of 3℃ - 9.9℃ at each external temperature conditions was considered efficient. This temperature range is close to a lower developmental threshold at which the biological control agents can survive with minimum energy for 12 h (direct delivery time), or 36-48 h (general delivery time) after packaging.

Prestress evaluation in continuous PSC bridges by dynamic identification

  • Breccolotti, Marco;Pozzaa, Francesco
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.4
    • /
    • pp.463-488
    • /
    • 2018
  • In the last decades, research efforts have been spent to investigate the effect of prestressing on the dynamic behaviour of prestressed concrete (PSC) beams. Whereas no agreement has been reached among the achievements obtained by different Researchers and among the theoretical and the experimental results for simply supported beams, very few researches have addressed this problem in continuous PSC beams. This topic is, indeed, worthy of consideration bearing in mind that many relevant bridges and viaducts in the road and railway networks have been designed and constructed with this structural scheme. In this paper the attention is, thus, focused on the dynamic features of continuous PSC bridges taking into account the effect of prestressing. This latter, in fact, contributes to the modification of the distribution of the bending stress along the beam, also by means of the secondary moments, and influences the flexural stiffness of the beam itself. The dynamic properties of a continuous, two spans bridge connected by a nonlinear spring have been extracted by solving an eigenvalue problem in different linearized configurations corresponding to different values of the prestress force. The stiffness of the nonlinear spring has been calculated considering the mechanical behaviour of the PSC beam in the uncracked and in the cracked stage. The application of the proposed methodology to several case studies indicates that the shift from the uncracked to the cracked stage due to an excessive prestress loss is clearly detectable looking at the variation of the dynamic properties of the beam. In service conditions, this shift happens for low values of the prestress losses (up to 20%) for structure with a high value of the ratio between the permanent load and the total load, as happens for instance in long span, continuous box bridges. In such conditions, the detection of the dynamic properties can provide meaningful information regarding the structural state of the PSC beam.

The Horizon Run 5 Cosmological Hydrodynamical Simulation: Probing Galaxy Formation from Kilo- to Giga-parsec Scales

  • Lee, Jaehyun;Shin, Jihey;Snaith, Owain N.;Kim, Yonghwi;Few, C. Gareth;Devriendt, Julien;Dubois, Yohan;Cox, Leah M.;Hong, Sungwook E.;Kwon, Oh-Kyoung;Park, Chan;Pichon, Christophe;Kim, Juhan;Gibson, Brad K.;Park, Changbom
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.38.2-38.2
    • /
    • 2020
  • Horizon Run 5 (HR5) is a cosmological hydrodynamical simulation which captures the properties of the Universe on a Gpc scale while achieving a resolution of 1 kpc. This enormous dynamic range allows us to simultaneously capture the physics of the cosmic web on very large scales and account for the formation and evolution of dwarf galaxies on much smaller scales. Inside the simulation box. we zoom-in on a high-resolution cuboid region with a volume of 1049 × 114 × 114 Mpc3. The subgrid physics chosen to model galaxy formation includes radiative heating/cooling, reionization, star formation, supernova feedback, chemical evolution tracking the enrichment of oxygen and iron, the growth of supermassive black holes and feedback from active galactic nuclei (AGN) in the form of a dual jet-heating mode. For this simulation we implemented a hybrid MPI-OpenMP version of the RAMSES code, specifically targeted for modern many-core many thread parallel architectures. For the post-processing, we extended the Friends-of-Friend (FoF) algorithm and developed a new galaxy finder to analyse the large outputs of HR5. The simulation successfully reproduces many observations, such as the cosmic star formation history, connectivity of galaxy distribution and stellar mass functions. The simulation also indicates that hydrodynamical effects on small scales impact galaxy clustering up to very large scales near and beyond the baryonic acoustic oscillation (BAO) scale. Hence, caution should be taken when using that scale as a cosmic standard ruler: one needs to carefully understand the corresponding biases. The simulation is expected to be an invaluable asset for the interpretation of upcoming deep surveys of the Universe.

  • PDF