• 제목/요약/키워드: distributed watershed model

검색결과 197건 처리시간 0.034초

SLURP 모형을 이용한 광역적 수문분석 - 소양강댐 유역을 대상으로 - (Regional Hydrological Analysis using SLURP Model - Soyanggang-dam watershed -)

  • 임혁진;권형중;장철희;김성준
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 2003년도 학술발표논문집
    • /
    • pp.523-526
    • /
    • 2003
  • This study is to test the applicability of SLURP (Semi-distributed Land Use-based runoff Process) model that is a semi-distributed, continuous hydrologic model developed by Kite (1997). The Soyanggang-dam watershed ($2,694km^2$) was selected. The DEM, land-cover map, monthly NDVI from NOAA/AVHRR and daily meteorological data of 2001 were prepared. By using the parameter optimization technique, SCE-UA (Shuffled Complex Evolution-University of Arizona), the model was calibrated and the Nash-Sutcliffe efficiency was 0.73.

  • PDF

유한요소법에 의한 소유역 유출모형의 적용 (Application of Storm Runoff Model on Small Watershed by Finite Element Method)

  • 최진규;손재권
    • 물과 미래
    • /
    • 제25권3호
    • /
    • pp.97-104
    • /
    • 1992
  • 분포형 수문모형은 유역의 공간적 특성과 강우양상을 고려한 강우-유출량의 추정을 위한 효과적인 수단으로 사용되고 있다. 본 연구는 소유역에서의 단기 홍수유출 해석을 위하여 유한요소 수치기법을 수문모형에 도입하고, 이를 소유역을 대상으로하여 유한요소모형의 적용성을 검토하고자 하였다. 모형에 적용된 자료는 2.8km2 인 연화천유역과 1991년 수문자료중 14개의 강우사상이 사용되었으며, 관측 및 모의 발생된 수문량을 비교하였다.

  • PDF

유역 공간 강우 산정방법에 따른 VfloTM 분포형 강우-유출 모형의 매개변수 평가 - 금호강 동촌 유역을 대상으로 - (Parameter Estimation of VfloTM Distributed Rainfall-Runoff Model by Areal Rainfall Calculation Methods - For Dongchon Watershed of Geumho River -)

  • 김시수;정충길;박종윤;정성원;김성준
    • 한국농공학회논문집
    • /
    • 제55권1호
    • /
    • pp.9-15
    • /
    • 2013
  • This study is to evaluate the parameter behavior of VfloTM distributed rainfall-runoff model by applying 3 kinds of rainfall interpolation methods viz. Inverse Distance Weighting (IDW), Kriging (KRI), and Thiessen network (THI). For the 1,544 $km^2$ Dongcheon watershed of Nakdong river, the model was calibrated using 4 storm events in 2007 and 2009, and validated using 2 storm events in 2010. The model was calibrated with Nash-Sutcliffe model efficiency of 0.97 for IDW, 0.94 for KRI, and 0.95 for THI respectively. For the sensitive parameters, the saturated hydraulic conductivity ($K_{sat}$) for IDW, KRI, and THI were 0.33, 0.31, and 0.43 cm/hr, and the soil suction head at the wetting front (${\Psi}_f$) were 4.10, 3.96, and 5.19 cm $H_2O$ respectively. These parameters affected the infiltration process by the spatial distribution of antecedent moisture condition before a storm.

GIS를 이용한 기저-유출 바탕의 수문모델 (Store-Release based Distributed Hydrologic Model with GIS)

  • 강광민;윤세의
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.35-35
    • /
    • 2012
  • Most grid-based distributed hydrologic models are complex in terms of data requirements, parameter estimation and computational demand. To address these issues, a simple grid-based hydrologic model is developed in a geographic information system (GIS) environment using storage-release concept. The model is named GIS Storage Release Model (GIS-StoRM). The storage-release concept uses the travel time within each cell to compute howmuch water is stored or released to the watershed outlet at each time step. The travel time within each cell is computed by combining the kinematic wave equation with Manning's equation. The input to GIS-StoRM includes geospatial datasets such as radar rainfall data (NEXRAD), land use and digital elevation model (DEM). The structural framework for GIS-StoRM is developed by exploiting geographic features in GIS as hydrologic modeling objects, which store and process geospatial and temporal information for hydrologic modeling. Hydrologic modeling objects developed in this study handle time series, raster and vector data within GIS to: (i) exchange input-output between modeling objects, (ii) extract parameters from GIS data; and (iii) simulate hydrologic processes. Conceptual and structural framework of GIS StoRM including its application to Pleasant Creek watershed in Indiana will be presented.

  • PDF

SWAT-K 모형을 이용한 설마천 유역의 수문성분 해석 (Hydrologic Component Analysis of the Seolma-Cheon Watershed by Using SWAT-K Model)

  • 김남원;이지은;정일문;김동필
    • 한국환경과학회지
    • /
    • 제17권12호
    • /
    • pp.1363-1372
    • /
    • 2008
  • In this study, long term semi distributed hydrologic model SWAT-K(Korea) is applied to the Seolma-Cheon watershed to analyze the hydrological components. Seolma-Cheon watershed has been operated as the test watershed of Korea Institute of Construction Technology for 13 years. Therefore it has an enough hydrologic data to analyze the hydrologic characteristics of small watershed. Especially, for the proper runoff analysis of steep watershed, calibration is performed reflecting the regression equation of slope and slope length. The simulated discharge shows good agreement with the observed one and the simulated evapotranspiration and groundwater discharge also show satisfactory results. Finally we presents the ratio of major hydrologic components for 3 years with those obsrved ones. This study is the basic research for future analyses such as relationship between hydrologic components and vegetation, watershed sediment nonpoint sources discharge etc.

소유역 유출해석을 위한 유한요소모형의 개발 (Development of Finite Element Model for Storm Runoff from Small Watersheds)

  • 최진규;박승우
    • 한국농공학회지
    • /
    • 제32권4호
    • /
    • pp.89-98
    • /
    • 1990
  • The objectives of this study are to develop a deterministic, distributed, and event - oriented hydrologic watershed model and to test the applicabilities of the model to small watersheds. The resulting model SRAFEM, Storm Runoff Analysis by Finite Element Method, is capable of simulating storm runoff from small watersheds using two - dimensional overland flow and one - dimensional channel flow components by. kinematic approximations and finite element method. Two small watersheds were selected and the applicability of the model was tested. The test results showed that the mean simulation errors for runoff volume and peak flow were 13.9% and 19.1 % for Yeonwha watershed. They were 42.8% and 8.0% for Banweol watershed, respectively.

  • PDF

산지 소유역의 홍수유출 예측을 위한 모의발생 수문모형의 개발 (Development of Hydrologic Simulation Model to Predict Flood Runoff in a Small Mountaineous Watershed)

  • 권순국;고덕구
    • 한국농공학회지
    • /
    • 제30권3호
    • /
    • pp.58-68
    • /
    • 1988
  • Most of the Korean watersheds are mountaineous and consist of various soil types and land uses And seldom watersheds are found to have long term hydrologic records. The SNUA, a hydrologic watershed model was developed to meet the unique characteristics of Korean watershed and simulate the storm hydrographs from a small mountaineous watershed. Also the applicability of the model was tested by comparing the simulated storm hydrographs and the observed from Dochuk watershed, Gwangjugun, Kyunggido The conclusions obtained in this study could be summarized as follows ; 1. The model includes the simulation of interception, evaporation and infiltration for land surface hydrologic cycle on the single storm basis and the flow routing features for both overland and channel systems. 2. Net rainfall is estimated from the continuous computation of water balance at the surface of interception storage accounting for the rainfall intensities and the evaporation losses at each time step. 3. Excess rainfall is calculated by the abstraction of infiltration loss estimated by the Green and Ainpt Model from the net rainfall. 4. A momentum equation in the form of kinematic wave representation is solved by the finite differential method to obtain the runoff rate at the exit of the watershed. 5. The developed SNUA Model is a type of distributed and event model that considers the spatial distribution of the watershed parameters and simulates the hydrograph on a single storm basis. 6. The results of verification test show that the simulated peak flows agree with the observed in the occurence time but have relative enors in the range of 5.4-40.6% in various flow rates and also show that the simulated total runoff have 6.9-32% of relative errors against the observed. 7. To improve the applicability of the model, it was thought that more studies like the application test to the other watersheds of various types or the addition of the other hydrologk components describing subsurface storages are needed.

  • PDF

청계천 유역에 대한 WEP 모형의 적용 (Application of WEP Model to the Cheonggyecheon Watershed)

  • 노성진;김현준;장철희
    • 한국수자원학회논문집
    • /
    • 제38권8호
    • /
    • pp.645-653
    • /
    • 2005
  • 청계천 유역(유로연장: 13.75 km, 유역면적: $50.95\;km^2$)의 물순환 해석에 물리적 개념의 공간 분포형 강우-유출 모형인 WEP 모형을 적용하였다. 모형 적용 결과, 청계천 유역은 전형적인 도시 유역의 특성을 나타내었는데, 강우시의 지표면 유출량이 크고, 강우의 유출에 대한 반응이 빠르며, 증발산의 경우는 산림지역보다 도시지역이 상대적으로 적었다. 또한 관측값과 비교한 결과 청계천의 하천 유출을 모의하기에 적절함을 알 수 있었고, 이를 토대로 청계천 유역 자체의 복원후 유지유량 공급능력에 대해 추정하였다. WEP 모형의 적용 결과, 2002년 청계천 유역의 물수지는 연간 1,388 mm의 강우에 대하여 830 mm의 지표면 유출이 발생하고 388 mm가 침투되며 397 mm가 증발산에 의해 대기중으로 방출되었다. 하천유출량은 1,228 mm로 이 중 지표면 유출, 중간 유출, 지하수 유출의 비율은 각각 $67.6\%,\;12.7\%,\;19.7\%$이었다.

제주 외도천 유역의 통합 물수지 분석 (An Integrated Water Budget Analysis of Oedocheon Watershed in Jeju Island)

  • 김남원;정일문;나한나
    • 한국환경과학회지
    • /
    • 제24권4호
    • /
    • pp.471-480
    • /
    • 2015
  • Hydrologic component analysis was conducted to investigate water budget characteristics the Oedocheon watershed, Jeju Island. For this purpose, integrated SWAT-MODFLOW model was applied to this watershed for continuous surface water-groundwater modeling. Pasture and forest-deciduous are the major land use types and these affect general hydrologic component ratio. The spatio-temporal groundwater recharge can be obtained from SWAT and then distributed groundwater recharge can be reproduced by MODFLOW. The groundwater level variation was simulated with distributed groundwater pumping data. The water budget in this watershed was compared with the previous estimated result by Jeju-Do(2013). As this result considered discharge to the coastal side, the discrepancy was found. However, it was found that the overall tendency of both analyses were similar.