Neural representation of a visual object is distributed across visual cortex and overlapped with those of many other objects. Thus repeating an object facilitates the recognition of the object while it impairs the recognition of other objects. These effects are called repetition priming and antipriming, respectively. Two experiments investigated a new phenomenon of repetition antipriming, in which a repeated object itself is antiprimed. The learning stage presented object pictures which were degraded at various levels. Participants determined how recognizable each object was. Then, the test stage presented the intact version of the object pictures and made participants to perform a categorization task. Both Experiment 1 and 2 found that the processing of the objects that had been recognized were facilitated (repetition priming) while the processing of the objects that had been perceptually ambiguous were impaired (repetition antipriming). These findings suggest that experiencing a perceptually ambiguous object might enhance the connection between feature-level representations and multiple object-level representations, which impairs the subsequent recognition of the repeated object.
KIPS Transactions on Computer and Communication Systems
/
v.9
no.1
/
pp.9-16
/
2020
The k-anonymity scheme has been widely used to protect private information when Big Data are distributed to a third party for research purposes. When the scheme is applied, an optimal k value determination is one of difficult problems to be resolved because many factors should be considered. Currently, the determination has been done almost manually by human experts with their intuition. This leads to degrade performance of the anonymization, and it takes much time and cost for them to do a task. To overcome this problem, a simple idea has been proposed that is based on machine learning. This paper describes implementations and experiments to realize the proposed idea. In thi work, a deep neural network (DNN) is implemented using tensorflow libraries, and it is trained and tested using input dataset. The experiment results show that a trend of training errors follows a typical pattern in DNN, but for validation errors, our model represents a different pattern from one shown in typical training process. The advantage of the proposed approach is that it can reduce time and cost for experts to determine k value because it can be done semi-automatically.
Kim, Chang-Hwan;Kim, Mi-Young;Moon, Je-Heon;Lim, Bee-Oh
Korean Journal of Applied Biomechanics
/
v.24
no.3
/
pp.287-293
/
2014
The purpose of this study was to investigate the effects of Hoehn-Yahr scale on the activation of lower-extremity muscles during walking. Electromyography (EMG) analysis was carried out on 36 patients with Parkinson's disease in the off phase of the medication cycle. We recorded EMG signals of the tibialis anterior (TA), medial gastrocnemius (MG), lateral gastrocnemius (LG), soleus (SOL), rectus femoris (RF), vastus lateralis (VL), semitendinosus (ST) and biceps femoris (BF) using Noraxon 16 channels EMG system during walking at preferred speed. Rectified EMG signals were normalized to reference voluntary contractions (RVC) over a gait cycle at the preferred speed, allowing for an assessment of how the activity was distributed over the gait cycle. Compared to the H & Y Scale 1, H & Y Scale 3 exhibited greater activation of the vastus lateralis during mid-stance and greater activation of the medial gastrocnemius during terminal swing. Compared to the H & Y Scale 1, H & Y Scale 2 and 3 exhibited less activation of the tibialis anterior during initial swing. We conclude that the more Hoen & Yahr Scale increase, the more abnormal lower-extremity muscles activation.
Journal of Korean Society of Occupational and Environmental Hygiene
/
v.24
no.3
/
pp.371-382
/
2014
Objectives: This study was undertaken in order to examine how musculoskeletal disorder(MSD) symptoms were affected by particular factors and then to explore control strategies to prevent MSDs in general hospital nurses. Materials: This, as part of a large study, was conducted using a set of information on literature review, questionnaire survey and focus group interview. It obtained prevalence and factors of MSD symptoms and examined how MSD symptoms were distributed and affected by the factors in nurses working at 15 general hospitals across Korea. The factors were personal factors, work organization, nursing tasks, physical factors and psychosocial factors. Results: A total of 501 nurses were determined as subjects. The highest MSD symptom prevalence was 61% for the shoulder, among body parts, followed by leg/feet(55%), low back(51%), neck(42%), wrist(38%), and elbow(21%). Prevalence for the whole body was 80%. Odds ratios ranged from 0.4 to 22.4 in logistic regression analyses. The symptoms were significantly attributed to factor variables such as body mass index, current health status, daily work time, nursing task, pooled-physical factors, ergonomic factors, work load, interpersonal conflict, and job insecurity. Conclusions: Two or more factor variables were significant, depending on body part, for MSD systems in the general hospital nurses. It was noticeable that physical factors, such as pooled-physical factors, ergonomic factors or work load, were selectively significant for MSD symptoms in all body parts, indicating that such information should be used for prevention of MSDs in the hospital sector.
Cloud computing is one of the distributed computing environments and utilizes several computing resources. Cloud environment uses a virtual machine to process a requested job. To balance a workload and process a job rapidly, cloud environment uses a provisioning technique and assigns a task with a status of virtual machine. However, a scheduling method for cloud computing requires a definition of virtual machine availabilities, which have an obscure meaning. In this paper, we propose Fuzzy logic driven Virtual machine Provisioning scheduling using Resource Evaluation(FVPRE). FVPRE analyzes a state of every virtual machine and actualizes a value of resource availability. Thus FVPRE provides an efficient provisioning scheduling with a precise evaluation of resource availability. FVPRE shows a high throughput and utilization for job processing on cloud environments.
Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
/
v.27
no.6
/
pp.679-688
/
2009
Worldwide exploring and research for manganese nodules, as new energy resource, distributed on the deep seabed have progressed recently. Korea Ocean Research & Development Institute(KORDI) is a central organization to exploit the manganese nodules in the Pacific Ocean with 5,000m depth. Precise exploration is required for estimating amount of recoverable deposit, and this task could be accomplished by processing digital image processing techniques to the images taken by underwater camera system. Image processing and analysis provide information about characteristics of distribution of the manganese nodules. This study proposed effective methods to remove vignetting effect to improve image quality and to extract information. The results show more reliable information could be obtained by removing the vignetting and feasibility of utilizing image processing techniques for exploring the manganese nodules.
In this paper, we Introduce the Unreal Tournament (UT) game and the Gamebots system. The former it a well-known 3D first-person action game and the latter is an intelligent agent research testbed based on UT And then we explain the design and implementation of KGBot, which is an intelligent non-player character deploying effectively within the 3D virtual environment provided by UT and the Gamebots system. KGBot is a bot client within the Gamebots System. KGBot accomplishes its own task to find out and dominate several domination points pro-located on the complex surface map of 3D virtual environment KGBot adopts UM-PRS as its control engine, which is a general BDI agent architecture. KGBot contains a hierarchical knowledge base representing its complex behaviors in multiple layers. In this paper, we explain details of KGBot's Intelligent behaviors, tuck af locating the hidden domination points by exploring the unknown world effectively. constructing a path map by collecting the waypoints and paths distributed over the world, and finding an optimal path to certain destination based on this path graph. Finally we analyze the performance of KGBot exploring strategy and control engine through some experiments on different 3D maps.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.5
no.9
/
pp.1492-1512
/
2011
Due to multiple hops, mobility and time-varying channel, supporting delay sensitive real-time traffic in wireless local area network-based (WLAN) mesh networks is a challenging task. In particular for real-time traffic subject to medium access control (MAC) layer control overhead, such as preamble, carrier sense waiting time and the random backoff period, the performance of real-time flows will be degraded greatly. In order to support real-time traffic, an efficient adaptive packet scheduling (APS) scheme is proposed, which aims to improve the system performance by guaranteeing inter-class, intra-class service differentiation and adaptively adjusting the packet length. APS classifies incoming packets by the IEEE 802.11e access class and then queued into a suitable buffer queue. APS employs strict priority service discipline for resource allocation among different service classes to achieve inter-class fairness. By estimating the received signal to interference plus noise ratio (SINR) per bit and current link condition, APS is able to calculate the optimized packet length with bi-dimensional markov MAC model to improve system performance. To achieve the fairness of intra-class, APS also takes maximum tolerable packet delay, transmission requests, and average allocation transmission into consideration to allocate transmission opportunity to the corresponding traffic. Detailed simulation results and comparison with IEEE 802.11e enhanced distributed channel access (EDCA) scheme show that the proposed APS scheme is able to effectively provide inter-class and intra-class differentiate services and improve QoS for real-time traffic in terms of throughput, end-to-end delay, packet loss rate and fairness.
The Transactions of the Korean Institute of Electrical Engineers P
/
v.67
no.4
/
pp.183-190
/
2018
Predicting accurate electricity prices is an important task in the electricity trading market. To address the electricity price forecasting problem, various approaches have been proposed so far and it is known that linear regression-based approaches are the best. However, the use of such linear regression-based methods is limited due to low accuracy and performance. In traditional linear regression methods, it is not practical to find a nonlinear regression model that explains the training data well. If the training data is complex (i.e., small-sized individual data and large-sized features), it is difficult to find the polynomial function with n terms as the model that fits to the training data. On the other hand, as a linear regression model approximating a nonlinear regression model is used, the accuracy of the model drops considerably because it does not accurately reflect the characteristics of the training data. To cope with this problem, we propose a new electricity price forecasting method that divides the entire dataset to multiple split datasets and find the best linear regression models, each of which is the optimal model in each dataset. Meanwhile, to improve the performance of the proposed method, we modify the proposed localized linear regression method in the map and reduce way that is a framework for parallel processing data stored in a Hadoop distributed file system. Our experimental results show that the proposed model outperforms the existing linear regression model. Specifically, the accuracy of the proposed method is improved by 45% and the performance is faster 5 times than the existing linear regression-based model.
Globally researchers at medical institutions are actively sharing COHORT data of patients to develop vaccines and treatments to overcome the COVID-19 crisis. OMOP-CDM, a common data model that efficiently shares medical data research independently operated by individual medical institutions has patient personal information (e.g. PII, PHI). Although PII and PHI are managed and shared indistinguishably through de-identification or anonymization in medical institutions they could not be guaranteed at 100% by complete de-identification and anonymization. For this reason the security of the OMOP-CDM database is important but there is no detailed and specific OMOP-CDM security inspection tool so risk mitigation measures are being taken with a general security inspection tool. This study intends to study and present a model for implementing a tool to check the security vulnerability of OMOP-CDM by analyzing the security guidelines for the US database and security controls of the personal information protection of the NIST. Additionally it intends to verify the implementation feasibility by real field demonstration in an actual 3 hospitals environment. As a result of checking the security status of the test server and the CDM database of the three hospitals in operation, most of the database audit and encryption functions were found to be insufficient. Based on these inspection results it was applied to the optimization study of the complex and time-consuming CDM CSF developed in the "Development of Security Framework Required for CDM-based Distributed Research" task of the Korea Health Industry Promotion Agency. According to several recent newspaper articles, Ramsomware attacks on financially large hospitals are intensifying. Organizations that are currently operating or will operate CDM databases need to install database audits(proofing) and encryption (data protection) that are not provided by the OMOP-CDM database template to prevent attackers from compromising.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.