Load balancing is the major benefit of any distributed system. To facilitate this advantage, task duplication and migration methodologies are employed. As this paper deals with dependent tasks (DAG), we used duplication. Task duplication reduces the overall schedule length of DAG along-with load balancing. This paper proposes a new task duplication algorithm at the time of tasks assignment on various processors. With the intention of conducting proposed algorithm performance computation; simulation has been done on the Netbeans IDE. The mesh topology of a distributed system is simulated at this juncture. For task duplication, overall schedule length of DAG is the main parameter that decides the performance of a proposed duplication algorithm. After obtaining the results we compared our performance with arbitrary task assignment, CAWF and HEFT-TD algorithms. Additionally, we also compared the complexity of the proposed algorithm with the Duplication Based Bottom Up scheduling (DBUS) and Heterogeneous Earliest Finish Time with Task Duplication (HEFT-TD).
We suggest a distributed framework for task assignment in the computer-controlled shop floor where each of the resource agents and part agents acts like an independent profit maker. The job allocation problem is formulated as a linear programming problem. The LP formulation is analyzed to provide a rationale for the distributed task assignment procedure. We suggest an auction based negotiation procedure including a price-based bid construction and a price revising mechanism. The performance of the suggested procedure is compared with those of an LP formulation and conventional dispatching procedures by simulation experiments.
As the role of robots expands, flexible task planning methods are attracting attention from various domains. Many task planning frameworks are introduced to efficiently work in a wide range of areas. In order to work well in a broad region with multiple robots, various communication conditions should be controlled by task planning frameworks. However, few methods are proposed. In this paper, we propose mission planning methods according to the communication status of robots. The proposed method was verified through experiments assuming different communication states with a multi-robot system.
This paper proposes a model for simulation and performance evaluation of distributed computer systems(DCS). The model is composed of operating system(OS), resource, task, environment submodel. Task Flow Graph(TFG) is suggested to describe the relation between tasks. This paper considers task response time, the scheduler's ready queue length, utilization of each resource as performance indices. The distributed system of Continuous Annealing Line(CAL) in iron process is simulated with the proposed model.
Federated learning provides an efficient integrated model for distributed data, allowing the local training of different data. Meanwhile, the goal of multi-task learning is to simultaneously establish models for multiple related tasks, and to obtain the underlying main structure. However, traditional federated multi-task learning models not only have strict requirements for the data distribution, but also demand large amounts of calculation and have slow convergence, which hindered their promotion in many fields. In our work, we apply the rank constraint on weight vectors of the multi-task learning model to adaptively adjust the task's similarity learning, according to the distribution of federal node data. The proposed model has a general framework for solving optimal solutions, which can be used to deal with various data types. Experiments show that our model has achieved the best results in different dataset. Notably, our model can still obtain stable results in datasets with large distribution differences. In addition, compared with traditional federated multi-task learning models, our algorithm is able to converge on a local optimal solution within limited training iterations.
KSII Transactions on Internet and Information Systems (TIIS)
/
제14권9호
/
pp.3663-3679
/
2020
Scheduling plays a dynamic role in cloud computing in generating as well as in efficient distribution of the resources of each task. The principle goal of scheduling is to limit resource starvation and to guarantee fairness among the parties using the resources. The demand for resources fluctuates dynamically hence the prearranging of resources is a challenging task. Many task-scheduling approaches have been used in the cloud-computing environment. Security in cloud computing environment is one of the core issue in distributed computing. We have designed a deep learning-based security model for scheduling tasks in cloud computing and it has been implemented using CloudSim 3.0 simulator written in Java and verification of the results from different perspectives, such as response time with and without security factors, makespan, cost, CPU utilization, I/O utilization, Memory utilization, and execution time is compared with Round Robin (RR) and Waited Round Robin (WRR) algorithms.
Journal of information and communication convergence engineering
/
제9권2호
/
pp.141-149
/
2011
We consider the problem of assigning tasks to homogeneous nodes in the distributed system, so as to minimize the amount of communication, while balancing the processors' loads. This issue can be posed as the graph partitioning problem. Given an undirected graph G=(nodes, edges), where nodes represent task modules and edges represent communication, the goal is to divide n, the number of processors, as to balance the processors' loads, while minimizing the capacity of edges cut. Since these two optimization criteria conflict each other, one has to make a compromise between them according to the given task type. We propose a new cost function to evaluate static task assignments and a heuristic algorithm to solve the transformed problem, explicitly describing the tradeoff between the two goals. Simulation results show that our approach outperforms an existing representative approach for a variety of task and processing systems.
현대 경영환경에서 팀 과업의 증가에 따른 집단성과급의 도입이 일반화되는 추세이다. 선행연구에서 집단성과급의 효과는 과업의 상호의존성에 따라 달라질 수 있다는 논의가 진행되어 왔는데, 이를 실증적으로 분석한 연구는 드물고 결과가 일관적이지 않았다. 또한, 선행연구의 과업구조가 모두 상이했다. 본 연구의 목적은 과업의 상호의존성에 따라 집단 성과급 분배 방식이 수행에 미치는 효과를 검증하는 것이었다. 이를 위해 서울소재 대학 교내 게시판 및 홈페이지를 통하여 대학생 및 대학원생, 교직원 120명을 모집하였고, 120명을 대상으로 실험을 실시하였다. 본 연구에서 사용된 실험 과제는 정해진 양식에 따라 글자, 숫자 그리고 기호를 입력하는 것이었다. 본 연구의 독립변인은 과업의 상호의존성 정도(개인과업과 상호의존과업)와 성과급 분배방식(동등분배 집단 성과급과 차등분배 집단 성과급)이었으며, 종속변인은 정확하게 입력한 문자의 수였다. 실험 설계는 2 × 2 요인설계였으며, 각 집단에 30명씩 무작위로 할당되었다. 분석은 개인차의 영향력을 최소화하기 위해 공변량 분석을 실시하였으며, 전체 회기는 공변량 분석을 위한 사전회기 1회기, 실험회기 4회기 총 5회기였으며, 각 회기는 20분으로 구성되었다. 연구 결과, 개인과업에서 차등분배 성과급과 동등분배 성과급이 수행에 미치는 효과는 거의 동일하게 나타났으나, 상호의존 과업에서는 동등분배 성과급이 차등분배 성과급보다 더 효과적으로 수행을 향상시키는 것으로 나타났다. 이는 과업의 상호의존성에 따라 집단 성과급 효과가 달라 질 수 있음을 시사하는 결과이다.
Advances in communication technologies and the decreasing cost of computers have made distributed computer systems an attractive alternative for satisfying the information needs of large organizations. This paper presents a distributed algorithm for performance improvement through load balancing and file migration in distributed systems. We employed a sender initiated strategy for task migration and used learning automata with several internal states for file migration. A task can be migrated according to the load information of a computer. A file is migrated to the destination processor when it is in the right boundary state. We also described an analytical model for load balancing with file migration to verify the proposed algorithm. Analytical and simulation results show that our algorithm is very well-suited for distributed system environments.
본 논문에서는 CBBA 알고리듬을 이용하여 SEAD 임무를 위한 이종무인기의 분산형 임무할당 알고리듬을 다룬다. SEAD 임무는 다수의 무인기를 다수의 대공 방어망 목표물에 할당 시키는 임무할당문제로 정의 할 수 있으며, 작전에 참여하는 무인기는 대공 방어망 파괴를 주목표 하는 위즐(weasel)과 주요 작전 및 전투 피해 평가를 수행하는 스트라이커(striker)로 구성된다. 본 논문에서는 최단경로생성 알고리듬과 CBBA 알고리듬을 이용하여 지형 장애물(terrain obstacle)이 있는 환경에서의 경로계획이 고려 된 이종 무인기의 분산형 임무할당 기법을 개발하고 SEAD 임무에 적용한다. 수치 시뮬레이션을 통하여 개발 된 기법의 성능과 적용가능성에 대해 검토한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.