• Title/Summary/Keyword: distributed mobile robot system

Search Result 50, Processing Time 0.027 seconds

Online Evolution for Cooperative Behavior in Group Robot Systems

  • Lee, Dong-Wook;Seo, Sang-Wook;Sim, Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.282-287
    • /
    • 2008
  • In distributed mobile robot systems, autonomous robots accomplish complicated tasks through intelligent cooperation with each other. This paper presents behavior learning and online distributed evolution for cooperative behavior of a group of autonomous robots. Learning and evolution capabilities are essential for a group of autonomous robots to adapt to unstructured environments. Behavior learning finds an optimal state-action mapping of a robot for a given operating condition. In behavior learning, a Q-learning algorithm is modified to handle delayed rewards in the distributed robot systems. A group of robots implements cooperative behaviors through communication with other robots. Individual robots improve the state-action mapping through online evolution with the crossover operator based on the Q-values and their update frequencies. A cooperative material search problem demonstrated the effectiveness of the proposed behavior learning and online distributed evolution method for implementing cooperative behavior of a group of autonomous mobile robots.

Human-Tracking Behavior of Mobile Robot Using Multi-Camera System in a Networked ISpace (공간지능화에서 다중카메라를 이용한 이동로봇의 인간추적행위)

  • Jin, Tae-Seok;Hashimoto, Hideki
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.310-316
    • /
    • 2007
  • The paper proposes a human-following behavior of mobile robot and an intelligent space (ISpace) is used in order to achieve these goals. An ISpace is a 3-D environment in which many sensors and intelligent devices are distributed. Mobile robots exist in this space as physical agents providing humans with services. A mobile robot is controlled to track a walking human using distributed intelligent sensors as stably and precisely as possible. The moving objects is assumed to be a point-object and projected onto an image plane to form a geometrical constraint equation that provides position data of the object based on the kinematics of the intelligent space. Uncertainties in the position estimation caused by the point-object assumption are compensated using the Kalman filter. To generate the shortest time trajectory to track the walking human, the linear and angular velocities are estimated and utilized. The computer simulation and experimental results of estimating and trackinging of the walking human with the mobile robot are presented.

  • PDF

Localization for Mobile Robot Navigation using Color Patches Installed on the Ceiling (천정 부착 칼라 패치 배열을 이용한 이동로봇의 자기위치 인식)

  • Wang, Shi;Chen, Hong-Xin;Strzelecki, Michal;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.2
    • /
    • pp.156-160
    • /
    • 2008
  • A localization system to estimate the position as well as movement direction of mobile robots is proposed in this paper. This system implements a camera fixed on a robot and color patches evenly distributed and mounted on the planar ceiling. Different permutations of patch colors code information about robot localization. Thus, extraction of color information from patch images leads to estimation of robot position. Additionally, simple geometric indicators are combined with patch colors to estimate robot's movement direction. Since only the distribution of patch colors has to be known, the analysis of patch images to is relatively fast and simple. The proposed robot localization system has been successfully tested for navigation of sample mobile robot. Obtained test results indicate the robustness and reliability of proposed technique for robot navigation.

Mobile Robot Localization Based on Hexagon Distributed Repeated Color Patches in Large Indoor Area (넓은 실내 공간에서 반복적인 칼라패치의 6각형 배열에 의한 이동로봇의 위치계산)

  • Chen, Hong-Xin;Wang, Shi;Han, Hoo-Sek;Kim, Hyong-Suk
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.15 no.4
    • /
    • pp.445-450
    • /
    • 2009
  • This paper presents a new mobile robot localization method for indoor robot navigation. The method uses hexagon distributed color-coded patches on the ceiling and a camera is installed on the robot facing the ceiling to recognize these patches. The proposed "cell-coded map", with the use of only seven different kinds of color-coded landmarks distributed in hexagonal way, helps reduce the complexity of the landmark structure and the error of landmark recognition. This technique is applicable for navigation in an unlimited size of indoor space. The structure of the landmarks and the recognition method are introduced. And 2 rigid rules are also used to ensure the correctness of the recognition. Experimental results prove that the method is useful.

Cooperative behavior and control of autonomous mobile robots using genetic programming (유전 프로그래밍에 의한 자율이동로봇군의 협조행동 및 제어)

  • 이동욱;심귀보
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.1177-1180
    • /
    • 1996
  • In this paper, we propose an algorithm that realizes cooperative behavior by construction of autonomous mobile robot system. Each robot is able to sense other robots and obstacles, and it has the rule of behavior to achieve the goal of the system. In this paper, to improve performance of the whole system, we use Genetic Programming based on Natural Selection. Genetic Programming's chromosome is a program of tree structure and it's major operators are crossover and mutation. We verify the effectiveness of the proposed scheme from the several examples.

  • PDF

Agent Mobility in Human Robot Interaction

  • Nguyen, To Dong;Oh, Sang-Rok;You, Bum-Jae
    • Proceedings of the KIEE Conference
    • /
    • 2005.07d
    • /
    • pp.2771-2773
    • /
    • 2005
  • In network human-robot interaction, human can access services of a robot system through the network The communication is done by interacting with the distributed sensors via voice, gestures or by using user network access device such as computer, PDA. The service organization and exploration is very important for this distributed system. In this paper we propose a new agent-based framework to integrate partners of this distributed system together and help users to explore the service effectively without complicated configuration. Our system consists of several robots. users and distributed sensors. These partners are connected in a decentralized but centralized control system using agent-based technology. Several experiments are conducted successfully using our framework The experiments show that this framework is good in term of increasing the availability of the system, reducing the time users and robots needs to connect to the network at the same time. The framework also provides some coordination methods for the human robot interaction system.

  • PDF

Development of a New 5 DOF Mobile Robot Arm and its Motion Control System

  • Choi Hyeung-Sik;Lee Chang-Man;Chun Chang-Hun
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1159-1168
    • /
    • 2006
  • In this paper, a new revolute mobile robot arm with five degree of freedom (d.o.f) was developed for autonomous moving robots. As a control system for the robot arm, a distributed control system composed of the main controller and five motor controllers for arm joints was developed. The main controller and the motor controllers w ε re developed using the ARM microprocessor and the TMS320c2407 microprocessor, respectively. A new trajectory tracking algorithm for the motor controllers was devised employing pre-generated off-line trajectory data. Also, a 3-D simulator based on the openGL software to simulate the motion of the robot arm was developed. To validate the performance of the robot system, experiments to track a specified trajectory were performed.

Obstacle Avoidance of Mobile Robot Using Distributed Fuzzy Control with Imitation of Potential Field (Potential Field 모방 분산 퍼지 제어를 통한 이동 로봇의 장애물 회피)

  • Kwak, Hwan-Joo;Park, Gwi-Tae
    • Proceedings of the IEEK Conference
    • /
    • 2009.05a
    • /
    • pp.378-380
    • /
    • 2009
  • For the autonomous movement, the optimal pat]1 planning connecting between current and target positions is essential, and the optimal path of mobile robot means obstacle-free and the shortest length path to a target position. Many actual mobile robots should move without any information of surrounded obstacles. This paper suggests a new method of obstacle avoidment which is suitable in unknown environments. This method of obstacle avoidance is designed with a distributed fuzzy control system, and imitates a Potential Field method. A simulation confirms the performance and correctness of the obstacle avoidance.

  • PDF

Development of BioRobot System Based on Mobile Agent for Clinical Laboratory (임상병리검사를 위한 모바일 에이전트 기반의 바이오로봇 시스템 개발)

  • Choi, Byung-June;Jin, Sung-Moon;Sin, Seung-Hun;Koo, Ja-Choon;Kim, Min-Chul;Kim, Jin-Hyun;Son, Woong-Hee;Ahn, Ki-Tak;Chung, Wan-Kyun;Choi, Hyouk-Ryeol
    • The Journal of Korea Robotics Society
    • /
    • v.2 no.4
    • /
    • pp.317-326
    • /
    • 2007
  • Recently, robotic automation in clinical laboratory becomes of keen interest as a fusion of bio and robotic technology. In this paper, we present a new robotic platform for clinical tests suitable for small or medium sized laboratories using mobile robots. The mobile robot called Mobile Agent is designed as transfer system of blood samples, reagents, microplates, and any instruments. Also, the developed mobile agent can perform diverse tests simultaneously based on its cooperative and distributed ability. The driving circuits for the mobile agent are embedded in the robot, and each mobile agent communicates with other agents by using Bluetooth communication. The RFID system is used to recognize patient information. Also, the magnetic hall sensor is embedded to remove and compensate the cumulated error of locomotion at the bottom of mobile agent. The proposed mobile agent can be easily used for various applications because it is designed to be compatible with general software development tools. The Mobile agents are manufactured, and feasibility of the robot and localization of the agents using magnetic hall sensor are validated by preliminary experiments.

  • PDF

Intelligent navigation and control system for a mobile robot based on different programming paradigms

  • Kubik, Tomasz;Loukianov, Andrey A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.36.6-36
    • /
    • 2001
  • The problem of robot navigation and control is a complex task. Its complexity and characteristics depends on the characteristics of the environment robot inhabits, robot construction (mechanical abilities to move, sense) and the job the robot is supposed to do. In this paper we propose a hybrid programming approach to mobile robot navigation and control in an indoor environment. In our approach we used declarative, procedural, and object oriented programming paradigms and we utilized some advantages of our distributed computing architecture. The programming languages corresponding to the paradigms we used were C, C++ and Prolog. In the paper we present some details of our mobile robot hardware and software structure, focusing on the software design and implementation.

  • PDF