• 제목/요약/키워드: distributed evolutionary algorithm

검색결과 24건 처리시간 0.022초

계승적 나이개념을 가진 다목적 진화알고리즘 개발 (The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept)

  • 강영훈;변증남
    • 한국지능시스템학회논문지
    • /
    • 제11권8호
    • /
    • pp.689-694
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithm such as SPEA. NSGA-II, PESA, and SPEA2 have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, “inherited age” and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

계승적 나이개념을 가진 다목적 진화알고리즘 개발 (The Development of a New Distributed Multiobjective Evolutionary Algorithm with an Inherited Age Concept)

  • Kang, Young-Hoon;Zeungnam Bien
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2001년도 추계학술대회 학술발표 논문집
    • /
    • pp.229-232
    • /
    • 2001
  • Recently, several promising multiobjective evolutionary algorithms, e,g, SPEA, NSGA-ll, PESA, and SPEA2, have been developed. In this paper, we also propose a new multiobjective evolutionary algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel concept, "inherited age" and total algorithm is executed based on the inherited age concept. Also, we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can preserve the diversity of the population. We will show the superior performance of the proposed algorithm by comparing the proposed algorithm with other promising algorithms for the test functions.

  • PDF

A Load Sharing Algorithm Including An Improved Response Time using Evolutionary Information in Distributed Systems

  • Lee, Seong-Hoon
    • International Journal of Contents
    • /
    • 제4권2호
    • /
    • pp.13-18
    • /
    • 2008
  • A load sharing algorithm is one of the important factors in computer system. In sender-initiated load sharing algorithms, when a distributed system becomes to heavy system load, it is difficult to find a suitable receiver because most processors have additional tasks to send. The sender continues to send unnecessary request messages for load transfer until a receiver is found while the system load is heavy. Because of these unnecessary request messages it results in inefficient communications, low cpu utilization, and low system throughput. To solve these problems, we propose a self-adjusting evolutionary algorithm for improved sender-initiated load sharing in distributed systems. This algorithm decreases response time and increases acceptance rate. Compared with the conventional sender-initiated load sharing algorithms, we show that the proposed algorithm performs better.

Two-Phase Distributed Evolutionary algorithm with Inherited Age Concept

  • Kang, Young-Hoon;Z. Zenn Bien
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2001년도 ICCAS
    • /
    • pp.101.4-101
    • /
    • 2001
  • Evolutionary algorithm has been receiving a remarkable attention due to the model-free and population-based parallel search attributes and much successful results are coming out. However, there are some problems in most of the evolutionary algorithms. The critical one is that it takes much time or large generations to search the global optimum in case of the objective function with multimodality. Another problem is that it usually cannot search all the local optima because it pays great attention to the search of the global optimum. In addition, if the objective function has several global optima, it may be very difficult to search all the global optima due to the global characteristics of the selection methods. To cope with these problems, at first we propose a preprocessing process, grid-filtering algorithm(GFA), and propose a new distributed evolutionary ...

  • PDF

Cooperative Behavior of Distributed Autonomous Robotic Systems Based on Schema Co-Evolutionary Algorithm

  • Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제2권3호
    • /
    • pp.185-190
    • /
    • 2002
  • In distributed autonomous robotic systems (DARS), each robot must behave by itself according to its states ad environments, and if necessary, must cooperate with other robots in order to carry out their given tasks. Its most significant merit is that they determine their behavior independently, and cooperate with other robots in order to perform the given tasks. Especially, in DARS, it is essential for each robot to have evolution ability in order to increase the performance of system. In this paper, a schema co-evolutionary algorithm is proposed for the evolution of collective autonomous mobile robots. Each robot exchanges the information, chromosome used in this algorithm, through communication with other robots. Each robot diffuses its chromosome to two or more robots, receives other robot's chromosome and creates new species. Therefore if one robot receives another robot's chromosome, the robot creates new chromosome. We verify the effectiveness of the proposed algorithm by applying it to cooperative search problem.

Distributed Database Design using Evolutionary Algorithms

  • Tosun, Umut
    • Journal of Communications and Networks
    • /
    • 제16권4호
    • /
    • pp.430-435
    • /
    • 2014
  • The performance of a distributed database system depends particularly on the site-allocation of the fragments. Queries access different fragments among the sites, and an originating site exists for each query. A data allocation algorithm should distribute the fragments to minimize the transfer and settlement costs of executing the query plans. The primary cost for a data allocation algorithm is the cost of the data transmission across the network. The data allocation problem in a distributed database is NP-complete, and scalable evolutionary algorithms were developed to minimize the execution costs of the query plans. In this paper, quadratic assignment problem heuristics were designed and implemented for the data allocation problem. The proposed algorithms find near-optimal solutions for the data allocation problem. In addition to the fast ant colony, robust tabu search, and genetic algorithm solutions to this problem, we propose a fast and scalable hybrid genetic multi-start tabu search algorithm that outperforms the other well-known heuristics in terms of execution time and solution quality.

균일분포의 파레토 최적해 생성을 위한 다목적 최적화 진화 알고리즘 (Evolutionary Multi-Objective Optimization Algorithms for Uniform Distributed Pareto Optimal Solutions)

  • 장수현;윤병주
    • 정보처리학회논문지B
    • /
    • 제11B권7호
    • /
    • pp.841-848
    • /
    • 2004
  • 진화 알고리즘은 여러 개의 상충하는 목적을 갖는 다목적 최적화 문제를 해결하기에 적합한 방법이다. 특히, 파레토 지배관계에 기초하여 개체의 적합도를 평가하는 파레토 기반 진화알고리즘들은 그 성능에 있어서 비교적 우수한 평가를 받고 있다. 그러나 일반화된 다목적 최적화 진화알고리즘은 복잡한 문제들에서 찾아진 해들의 분포가 전체 파레토 경계면에 대하여 균일하지 못하고 특정 지역에서 집중적으로 해를 생성하는 문제점을 가지고 있다. 본 논문에서 우리는 이러한 문제점을 보완하기 위한 다목적 최적화 진화알고리즘을 제안한다. 제안한 알고리즘은 현재까지 찾아진 최적해들 중 특정 지역에 관중되지 않은 해를 우수 종자로 복제 연산에 참여시킨다. 따라서 특별한 지역탐색 기법을 사용하지 않아도 종자가 되는 개체 주위에 새로운 개체를 생성할 확률이 높기 때문에 지역탐색의 효과를 가질 수 있고, 비교적 고른 분포의 파레토 최적 해를 생성한 수 있다. 5개의 테스트 함수에 대한 실험 결과, 제안한 알고리즘은 모든 문제에서 전체 파레토 경계면에 균일한 분포의 해들을 생성할 수 있었으며, 많은 지역해를 가지는 문제를 제외한 모든 문제에서 NSGA-II보다 우수한 수렴 결과를 보였다.

2 계층 공생 진화알고리듬을 이용한 다목적 최적화 (Multi-objective optimization using a two-leveled symbiotic evolutionary algorithm)

  • 신경석;김여근
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2006년도 추계학술대회
    • /
    • pp.573-576
    • /
    • 2006
  • This paper deals with multi-objective optimization problem of finding a set of well-distributed solutions close to the true Pareto optimal solutions. In this paper, we present a two-leveled symbiotic evolutionary algorithm to efficiently solve the problem. Most of the existing multi-objective evolutionary algorithms (MOEAs) operate one population that consists of individuals representing the complete solution to the problem. The proposed algorithm maintains several populations, each of which represents a partial solution to the entire problem, and has a structure with two levels. The parallel search and the structure are intended to improve the capability of searching diverse and good solutions. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The experimental results confirm the effectiveness of the proposed algorithm.

  • PDF

다목적을 갖는 혼합모델 조립라인의 밸런싱과 투입순서를 위한 공생 진화알고리즘 (A Symbiotic Evolutionary Algorithm for Balancing and Sequencing Mixed Model Assembly Lines with Multiple Objectives)

  • 김여근;이상선
    • 한국경영과학회지
    • /
    • 제35권3호
    • /
    • pp.25-43
    • /
    • 2010
  • We consider a multi-objective balancing and sequencing problem in mixed model assembly lines, which is important for an efficient use of the assembly lines. In this paper, we present a neighborhood symbiotic evolutionary algorithm to simultaneously solve the two problems of balancing and model sequencing under multiple objectives. We aim to find a set of well-distributed solutions close to the true Pareto optimal solutions for decision makers. The proposed algorithm has a two-leveled structure. At Level 1, two populations are operated : One consists of individuals each of which represents a partial solution to the balancing problem and the other consists of individuals for the sequencing problem. Level 2, which is an upper level, works one population whose individuals represent the combined entire solutions to the two problems. The process of Level 1 imitates a neighborhood symbiotic evolution and that of Level 2 simulates an endosymbiotic evolution together with an elitist strategy to promote the capability of solution search. The performance of the proposed algorithm is compared with those of the existing algorithms in convergence, diversity and computation time of nondominated solutions. The experimental results show that the proposed algorithm is superior to the compared algorithms in all the three performance measures.

다목적 최적화를 위한 공생 진화알고리듬 (A Symbiotic Evolutionary Algorithm for Multi-objective Optimization)

  • 신경석;김여근
    • 한국경영과학회지
    • /
    • 제32권1호
    • /
    • pp.77-91
    • /
    • 2007
  • In this paper, we present a symbiotic evolutionary algorithm for multi-objective optimization. The goal in multi-objective evolutionary algorithms (MOEAs) is to find a set of well-distributed solutions close to the true Pareto optimal solutions. Most of the existing MOEAs operate one population that consists of individuals representing the entire solution to the problem. The proposed algorithm has a two-leveled structure. The structure is intended to improve the capability of searching diverse and food solutions. At the lower level there exist several populations, each of which represents a partial solution to the entire problem, and at the upper level there is one population whose individuals represent the entire solutions to the problem. The parallel search with partial solutions at the lower level and the Integrated search with entire solutions at the upper level are carried out simultaneously. The performance of the proposed algorithm is compared with those of the existing algorithms in terms of convergence and diversity. The optimization problems with continuous variables and discrete variables are used as test-bed problems. The experimental results confirm the effectiveness of the proposed algorithm.