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ABSTRACT
Recently, several promising multiobjective evolutionary algorithms, e.g., SPEA, NSGA-Il, PESA, and
SPEA2, have been developed. In this paper, we aiso propose a new multiobjective evolutionary
algorithm that compares to them. In the algorithm proposed in this paper, we introduce a novel

concept, "inherited age” and

total algorithm is executed based on the inherited age concept. Also,

we propose a new sharing algorithm, called objective classication sharing algorithm(OCSA) that can
preserve the diversity of the population. We will show the superior performance of the proposed
algorithm by comparing the proposed algorithm with other promising algorithms for the test

functions.

Keywords
classification sharing algorithm(OCSA)

1. Introduction

Many real-world problems involves multiple
performance measures or objective that need to be
optimized simultaneously. The  multiobjective
optimization problem(MOP) is no doubt a very
practical and challenging topic in the optimization
field. Unlike a single-objective optimization
problem, the MOP seldom admits a single perfect
solution, Instead, the MOP may render a family of
alternative solutions, all of which should be treated
to be equally important with no preference
information about the multiple objectives.

There have been proposed various methods of
solving the MOP. Among them, the evolutionary
algorithm(EA) seems particularly suitable to solve
the MOP, noting that EA is population—to-populat—~
on based search method.

It was during 1980's when the EA was first
applied to the MOP. In the early 1990's, many
Pareto-based approaches were reported such as
Fonseca and Fleming’'s MOGA, Horn, Nafpliotis,
and Goldberg’s NPGA, and Srinivas and Deb’s

Distributed multiobjective evolutionary algorithm(DMEA), Inherited Age(lA), Objective

NSGA([3,5]). Those multiobjective evolutionary
algorithms(MEAs) showed the potential of the EA
on the MOP. However, they did not incorporate
the elitism explicitly so that their performances
seem somewhat low in various complex test
problems. Therefore, elitist MEAs such as strength
Pareto EA(SPEA), Pareto archived evolutionary
strategy(PAES), NSGA-II, Pareto envelope-based
Selection Algorithm(PESA), and SPEA2, which are
shown to outperform many non-elitist MEAs([1,24
,7.89D.

In this paper, we also propose a new distributed
MEA(DMEA) which is comparable well to above
elitist MEAs in its performances. In the proposed
algorithm, an inherited age(IA) concept will be
introduced and utilized as a very important
concept. Also a new sharing algorithm, called
objective classification sharing algorithm(OCSA)
will be introduced and utilized as a sharing
technique and as a parent selection method. It will
be shown that the performance of the proposed
algorithm is better or at least equal to SPEA,
PESA, NSGA-II, and SPEA2 for the test
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problems.
2. Problem formulation

Without loss of generality, we consider a
multiobjective minimization problem. We shall use
the terminologies and notations in ref({7,8]).
Problem statement on the  multiobjective
minimization problem: Given = decision variables
and m objectives, the problem to consider is:

Minimize

=30 =(f (D, AR, (D),

where—§=(xl,x2,---,x,,)eX, _}>'=(;V1,Yz."',ym)EY.
X the

- - . s
Here, =x is called a decision vector,

parameter space, ; an objective vector, Y the
objective space([7]).

An objective vector —z:=(u1,---,um)EY is said to

dominate an objective vector v=(v;, )€Y iff
Vie{l,,m} u;<v; and 3je{l,--,m}: u<v;,. The
objective vector #eY is said to be nondominated
regarding a set Y SY if and only if there is no

vector in Y which dominates # A decision

vector ;u is said to be Pareto-optimal if and
only if there exists no x,€X for which A %) is
Yaf x,). The
detailed definitions and notions can be shown in

([7,8D.

nondominated regarding the set

3. A new distributed multiobjective
evolutionary algorithm(DMEA)

The procedure of the proposed algorithm is almost
equal to some known MEAs but the concrete
selection method and offspring generation scheme
are different. In particular, a novel notion, inherited
age concept is newly introduced. In this section,
we elaborate the inherited age concept and present
the proposed algorithm in detail.

3.1 Inherited age concept(IAC)

In the search algorithm, it would be desirable
that exploration and exploitation capabilities are
properly adjusted to the various situations.
However, in many EAs, offspring generation
operators, crossover and mutation, have the same
exploration and exploitation capabilities for all the
generations. To compensate for this weak point
and thus to improve the searching effectiveness,
we devise a new offspring generation scheme
based on the fractal geometry by introducing a

novel notion, called "inherited age”(I6]). we first
show briefly the new offspring generation scheme
then, explain the IAC.

Based on the fractal concept, the position
structure of offspring, called fractal frame from
now, is fixed and only its size or evolution
distance is scaled down according to the IA of the
parent as shown in Fig. 1([6]). The fractal frame
consists of all the positions distant from the parent
by the evolution distance along all parameter axes.
When offspring are generated, they inherit the IA
from their parents as shown in Fig. 1.
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Fig. 1 New offspring generation scheme

Now, Let’s consider the IAC based on the new
offspring generation scheme. As shown in Fig. 1,
solutions can approach fast the Pareto optimal set
if the evolution distance is large in case A and, in
case B, the solutions can converge more accurately
to the Pareto optimal set if the evolution distance
is small. To do so, it is needed to measure how
near or far a solution exists from the Pareto
optimal set in the parameter space.

To measure the distance information, all the
solutions are endowed with the inherited age(IA).
The IA of the parent is increased by one when
the parent solution is nondominated to its own
offspring as shown in case B of Fig. 2. That is,
the IA of the parent is increased by one when it
exists within its evolution distance from the Pareto
optimal set as shown in case B of Fig. 1.
Therefore, it can be said to a certain extent that
the IA means physically how far or near a
solution exists from the Pareto optimal set.
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Fig. 2 Comparison of parent with its own

offspring

When offspring are generated, they inherit the
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ages from their parents as shown in Fig. 1. In a
human being, newly born baby grows old from
one year because he does not inherit anything
from his parents. Note that the age in this paper
contains the information about the growing history
and exploration experience. Offspring grow old not
from one year but from the ages of their parents
because they inherit the exploration experience by
succeeding the IA of their parents.

So, solutions can converge to the Pareto optimal
set more effectively if the evolution distance
becomes smaller whenever their IAs are increased.
Therefore, under the assumption that the range of
each decision variable is normalized to constant
value, the evolution distance d, of a parent with

inherited age a is determined to be inversely
proportional to its inherited age as follow,

d,=dy(r,)?, where d, is the initial evolution
distance and 7, (0.5<7,<1) is the aging rate. In
this paper,
variable in the parameter space.

When the dimension of the parameter space is
large, too many offspring are generated. So, the
computational load will be increased very much
and the efficiency will be decreased. Therefore, we
reduce the number of offspring for each parent,
instead of generating offspring at all the positions
of the fractal frame. If the number of offspring is
decreased, the probability of the wrong age

dy is a third of total range of each

increase is also increased. To compensate for this-

wrong age increase, we increase the aging rate
r,. For the ideal case, the aging rate 7, is 1/2.

Note that the probability of the wrong age
increase gets higher as the number of offspring
gets smaller compared with the ideal case.
Therefore, the aging rate should be increased as
the number of offspring is reduced. If the aging
rate 7, is greater than one, the evolution distance

becomes larger as the age is increased, which is
undesirable effect in search algorithm. Therefore,,
we confine the maximum value of 7, to be one.

3.2 A new distributed multiobjective EA

In previous many EAs, the promising solutions
to be evolved to the Pareto solutions may have a
high probability to be removed by the superior
solutions, noting that parents are selected by
comparing simultaneously all the solutions. To
solve this problem, each parent generates its own
offspring with no relation to other parents and is
also compared with its own offspring in the
proposed algorithm. Therefore, each parent can
perform independently the searching task so that
the MEA proposed is called distributed
multiobjective EA(DMEA).

The procedure of the proposed algorithm can be

represented as shown in Fig. 3. As explained
before, offspring are generated and then, they are
compared with their parents and the nondominated
solutions are extracted. It is kept in mind that
each parent is compared with its own offspring.
All the resulting nondominated solutions are
collected to be one solution set, called the
nondominated solution set(NSS).

Then, NSS is combined with the external
solution set(ESS). For the combined solution set,
the OCSA is executed to reduce its size. Among
the resulting solutions after the sharing, parent
solutions are selected using the OCSA and
offspring are generated from the selected parents.
And the remaining solutions are stored to be the
ESS and they are combined with the NSS at the
next generation. So, ESS plays an important role
in preserving the diversity of the population. All
the procedure is repeated until the final generation.
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Fig. 3 Total flow diagram of the DMEA

In the OCSA, we select solutions in terms of
their distribution such that selected solutions are
distributed evenly into the entire objective space.
As shown in Fig. 4, solutions are classified into
several classes based on the distribution of one
objective value. In each class, the best solution is
selected in terms of the other objective.
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Fig. 4 Example of the OPSA

4. Simulation
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To compare the proposed algorithm with other
MEAs, simulation will be performed for the test
functions as follows([8,9]).

A(%) =1— exp(~4x))sin®(6xx,)

£ =g~ (A(2)/e(x)?

g =1+9(( K/ (n=D)"*

where #=10,100 and x;=[0,1]. For each parent,
three offspring are generated. The other parameter
values are represented in Table 1(the numbers in
the blank represent the parameter values in other
MEAs). As mentioned before, the aging rate is
much larger in case of large decision vector. The
parameter values for other algorithms are the
same in ref([8,9]).

Table. 1 The parameter values

parent| sharing | 7, |gen. eval.
n=10{ 30 {100(100)| 3/4 |150(250) |19611(25000)
n=100{ 30 [200(200)(19/20{950(1000)[97293(100000)

The proposed algorithm is compared with SPEA,
NSGA, NPGA, and SOEA in Fig. 5. In that figure,
the performance is much better than the other
MEAs in terms of the quality and quantity of the
nondominated solutions found even at a small
generation and objective evaluation. Also, the
proposed algorithm is compared with SPEA,
SPEA2, NSGA2, and PESA in Fig. 6. For large
dimension of decision vector, proposed algorithm is
much better than the other MEAs.
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Fig. 6 The case of n=100

5. Conclusion

In this paper, we propose a new distributed
multiobjective evolutionary algorithm based on the
inherited age concept. As shown in the simulation,
the proposed DMEA is much better than other
MEAs in terms of quality, quantity, and distribution.
Therefore, it can be guaranteed that the inherited
age concept plays an important role in the proposed
algorithm. Therefore, the inherited age concept can
be utilized in various search algorithms.
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