• Title/Summary/Keyword: distributed cloud

Search Result 327, Processing Time 0.023 seconds

Multi-objective Optimization Model with AHP Decision-making for Cloud Service Composition

  • Liu, Li;Zhang, Miao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.9 no.9
    • /
    • pp.3293-3311
    • /
    • 2015
  • Cloud services are required to be composed as a single service to fulfill the workflow applications. Service composition in Cloud raises new challenges caused by the diversity of users with different QoS requirements and vague preferences, as well as the development of cloud computing having geographically distributed characteristics. So the selection of the best service composition is a complex problem and it faces trade-off among various QoS criteria. In this paper, we propose a Cloud service composition approach based on evolutionary algorithms, i.e., NSGA-II and MOPSO. We utilize the combination of multi-objective evolutionary approaches and Decision-Making method (AHP) to solve Cloud service composition optimization problem. The weights generated from AHP are applied to the Crowding Distance calculations of the above two evolutionary algorithms. Our algorithm beats single-objective algorithms on the optimization ability. And compared with general multi-objective algorithms, it is able to precisely capture the users' preferences. The results of the simulation also show that our approach can achieve a better scalability.

An IPSO-KELM based malicious behaviour detection and SHA256-RSA based secure data transmission in the cloud paradigm

  • Ponnuviji, N.P.;Prem, M. Vigilson
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.15 no.11
    • /
    • pp.4011-4027
    • /
    • 2021
  • Cloud Computing has emerged as an extensively used technology not only in the IT sector but almost in all sectors. As the nature of the cloud is distributed and dynamic, the jeopardies present in the current implementations of virtualization, numerous security threats and attacks have been reported. Considering the potent architecture and the system complexity, it is indispensable to adopt fundamentals. This paper proposes a secure authentication and data sharing scheme for providing security to the cloud data. An efficient IPSO-KELM is proposed for detecting the malicious behaviour of the user. Initially, the proposed method starts with the authentication phase of the data sender. After authentication, the sender sends the data to the cloud, and the IPSO-KELM identifies if the received data from the sender is an attacked one or normal data i.e. the algorithm identifies if the data is received from a malicious sender or authenticated sender. If the data received from the sender is identified to be normal data, then the data is securely shared with the data receiver using SHA256-RSA algorithm. The upshot of the proposed method are scrutinized by identifying the dissimilarities with the other existing techniques to confirm that the proposed IPSO-KELM and SHA256-RSA works well for malicious user detection and secure data sharing in the cloud.

A Fully Distributed Secure Approach using Nondeterministic Encryption for Database Security in Cloud

  • Srinu Banothu;A. Govardhan;Karnam Madhavi
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.1
    • /
    • pp.140-150
    • /
    • 2024
  • Database-as-a-Service is one of the prime services provided by Cloud Computing. It provides data storage and management services to individuals, enterprises and organizations on pay and uses basis. In which any enterprise or organization can outsource its databases to the Cloud Service Provider (CSP) and query the data whenever and wherever required through any devices connected to the internet. The advantage of this service is that enterprises or organizations can reduce the cost of establishing and maintaining infrastructure locally. However, there exist some database security, privacychallenges and query performance issues to access data, to overcome these issues, in our recent research, developed a database security model using a deterministic encryption scheme, which improved query execution performance and database security level.As this model is implemented using a deterministic encryption scheme, it may suffer from chosen plain text attack, to overcome this issue. In this paper, we proposed a new model for cloud database security using nondeterministic encryption, order preserving encryption, homomorphic encryptionand database distribution schemes, andour proposed model supports execution of queries with equality check, range condition and aggregate operations on encrypted cloud database without decryption. This model is more secure with optimal query execution performance.

Data Processing Architecture for Cloud and Big Data Services in Terms of Cost Saving (비용절감 측면에서 클라우드, 빅데이터 서비스를 위한 대용량 데이터 처리 아키텍쳐)

  • Lee, Byoung-Yup;Park, Jae-Yeol;Yoo, Jae-Soo
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.5
    • /
    • pp.570-581
    • /
    • 2015
  • In recent years, many institutions predict that cloud services and big data will be popular IT trends in the near future. A number of leading IT vendors are focusing on practical solutions and services for cloud and big data. In addition, cloud has the advantage of unrestricted in selecting resources for business model based on a variety of internet-based technologies which is the reason that provisioning and virtualization technologies for active resource expansion has been attracting attention as a leading technology above all the other technologies. Big data took data prediction model to another level by providing the base for the analysis of unstructured data that could not have been analyzed in the past. Since what cloud services and big data have in common is the services and analysis based on mass amount of data, efficient operation and designing of mass data has become a critical issue from the early stage of development. Thus, in this paper, I would like to establish data processing architecture based on technological requirements of mass data for cloud and big data services. Particularly, I would like to introduce requirements that must be met in order for distributed file system to engage in cloud computing, and efficient compression technology requirements of mass data for big data and cloud computing in terms of cost-saving, as well as technological requirements of open-source-based system such as Hadoop eco system distributed file system and memory database that are available in cloud computing.

A Novel Reference Model for Cloud Manufacturing CPS Platform Based on oneM2M Standard (제조 클라우드 CPS를 위한 oneM2M 기반의 플랫폼 참조 모델)

  • Yun, Seongjin;Kim, Hanjin;Shin, Hyeonyeop;Chin, Hoe Seung;Kim, Won-Tae
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.8 no.2
    • /
    • pp.41-56
    • /
    • 2019
  • Cloud manufacturing is a new concept of manufacturing process that works like a single factory with connected multiple factories. The cloud manufacturing system is a kind of large-scale CPS that produces products through the collaboration of distributed manufacturing facilities based on technologies such as cloud computing, IoT, and virtualization. It utilizes diverse and distributed facilities based on centralized information systems, which allows flexible composition user-centric and service-oriented large-scale systems. However, the cloud manufacturing system is composed of a large number of highly heterogeneous subsystems. It has difficulties in interconnection, data exchange, information processing, and system verification for system construction. In this paper, we derive the user requirements of various aspects of the cloud manufacturing system, such as functional, human, trustworthiness, timing, data and composition, based on the CPS Framework, which is the analysis methodology for CPS. Next, by analyzing the user requirements we define the system requirements including scalability, composability, interactivity, dependability, timing, interoperability and intelligence. We map the defined CPS system requirements to the requirements of oneM2M, which is the platform standard for IoT, so that the support of the system requirements at the level of the IoT platform is verified through Mobius, which is the implementation of oneM2M standard. Analyzing the verification result, finally, we propose a large-scale cloud manufacturing platform based on oneM2M that can meet the cloud manufacturing requirements to support the overall features of the Cloud Manufacturing CPS with dependability.

Securing Sensitive Data in Cloud Storage (클라우드 스토리지에서의 중요데이터 보호)

  • Lee, Shir-Ly;Lee, Hoon-Jae
    • Annual Conference of KIPS
    • /
    • 2011.04a
    • /
    • pp.871-874
    • /
    • 2011
  • The fast emerging of network technology and the high demand of computing resources have prompted many organizations to outsource their storage and computing needs. Cloud based storage services such as Microsoft's Azure and Amazon's S3 allow customers to store and retrieve any amount of data, at anytime from anywhere via internet. The scalable and dynamic of the cloud storage services help their customer to reduce IT administration and maintenance costs. No doubt, cloud based storage services brought a lot of benefits to its customer by significantly reducing cost through optimization increased operating and economic efficiencies. However without appropriate security and privacy solution in place, it could become major issues to the organization. As data get produced, transferred and stored at off premise and multi tenant cloud based storage, it becomes vulnerable to unauthorized disclosure and unauthorized modification. An attacker able to change or modify data while data inflight or when data is stored on disk, so it is very important to secure data during its entire life-cycle. The traditional cryptography primitives for the purpose of data security protection cannot be directly adopted due to user's lose control of data under off premises cloud server. Secondly cloud based storage is not just a third party data warehouse, the data stored in cloud are frequently update by the users and lastly cloud computing is running in a simultaneous, cooperated and distributed manner. In our proposed mechanism we protect the integrity, authentication and confidentiality of cloud based data with the encrypt- then-upload concept. We modified and applied proxy re-encryption protocol in our proposed scheme. The whole process does not reveal the clear data to any third party including the cloud provider at any stage, this helps to make sure only the authorized user who own corresponding token able to access the data as well as preventing data from being shared without any permission from data owner. Besides, preventing the cloud storage providers from unauthorized access and making illegal authorization to access the data, our scheme also protect the data integrity by using hash function.

Real-Time IoT Big-data Processing for Stream Reasoning (스트림-리즈닝을 위한 실시간 사물인터넷 빅-데이터 처리)

  • Yun, Chang Ho;Park, Jong Won;Jung, Hae Sun;Lee, Yong Woo
    • Journal of Internet Computing and Services
    • /
    • v.18 no.3
    • /
    • pp.1-9
    • /
    • 2017
  • Smart Cities intelligently manage numerous infrastructures, including Smart-City IoT devices, and provide a variety of smart-city applications to citizen. In order to provide various information needed for smart-city applications, Smart Cities require a function to intelligently process large-scale streamed big data that are constantly generated from a large number of IoT devices. To provide smart services in Smart-City, the Smart-City Consortium uses stream reasoning. Our stream reasoning requires real-time processing of big data. However, there are limitations associated with real-time processing of large-scale streamed big data in Smart Cities. In this paper, we introduce one of our researches on cloud computing based real-time distributed-parallel-processing to be used in stream-reasoning of IoT big data in Smart Cities. The Smart-City Consortium introduced its previously developed smart-city middleware. In the research for this paper, we made cloud computing based real-time distributed-parallel-processing available in the cloud computing platform of the smart-city middleware developed in the previous research, so that we can perform real-time distributed-parallel-processing with them. This paper introduces a real-time distributed-parallel-processing method and system for stream reasoning with IoT big data transmitted from various sensors of Smart Cities and evaluate the performance of real-time distributed-parallel-processing of the system where the method is implemented.

Enabling Efficient Verification of Dynamic Data Possession and Batch Updating in Cloud Storage

  • Qi, Yining;Tang, Xin;Huang, Yongfeng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.6
    • /
    • pp.2429-2449
    • /
    • 2018
  • Dynamic data possession verification is a common requirement in cloud storage systems. After the client outsources its data to the cloud, it needs to not only check the integrity of its data but also verify whether the update is executed correctly. Previous researches have proposed various schemes based on Merkle Hash Tree (MHT) and implemented some initial improvements to prevent the tree imbalance. This paper tries to take one step further: Is there still any problems remained for optimization? In this paper, we study how to raise the efficiency of data dynamics by improving the parts of query and rebalancing, using a new data structure called Rank-Based Merkle AVL Tree (RB-MAT). Furthermore, we fill the gap of verifying multiple update operations at the same time, which is the novel batch updating scheme. The experimental results show that our efficient scheme has better efficiency than those of existing methods.

Autonomy for Smart Manufacturing (스마트 매뉴팩처링을 위한 자율화)

  • Park, Hong-Seok;Tran, Ngoc-Hien
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.4
    • /
    • pp.287-295
    • /
    • 2014
  • Smart manufacturing (SM) considered as a new trend of modern manufacturing helps to meet objectives associated with the productivity, quality, cost and competiveness. It is characterized by decentralized, distributed, networked compositions of autonomous systems. The model of SM is inherited from the organization of the living systems in biology and nature such as ant colony, school of fish, bee's foraging behaviors, and so on. In which, the resources of the manufacturing system are considered as biological organisms, which are autonomous entities so that the manufacturing system has the advanced characteristics inspired from biology such as self-adaptation, self-diagnosis, and self-healing. To prove this concept, a cloud machining system is considered as research object in which internet of things and cloud computing are used to integrate, organize and allocate the machining resources. Artificial life tools are used for cooperation among autonomous elements in the cloud machining system.

Analyzing RDF Data in Linked Open Data Cloud using Formal Concept Analysis

  • Hwang, Suk-Hyung;Cho, Dong-Heon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.6
    • /
    • pp.57-68
    • /
    • 2017
  • The Linked Open Data(LOD) cloud is quickly becoming one of the largest collections of interlinked datasets and the de facto standard for publishing, sharing and connecting pieces of data on the Web. Data publishers from diverse domains publish their data using Resource Description Framework(RDF) data model and provide SPARQL endpoints to enable querying their data, which enables creating a global, distributed and interconnected dataspace on the LOD cloud. Although it is possible to extract structured data as query results by using SPARQL, users have very poor in analysis and visualization of RDF data from SPARQL query results. Therefore, to tackle this issue, based on Formal Concept Analysis, we propose a novel approach for analyzing and visualizing useful information from the LOD cloud. The RDF data analysis and visualization technique proposed in this paper can be utilized in the field of semantic web data mining by extracting and analyzing the information and knowledge inherent in LOD and supporting classification and visualization.